Step | Hyp | Ref
| Expression |
1 | | elnn 7595 |
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐴 ∈ ω) → 𝐵 ∈ ω) |
2 | 1 | ancoms 462 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ω) |
3 | | nnord 7593 |
. . . . . . 7
⊢ (𝐴 ∈ ω → Ord 𝐴) |
4 | | ordsucss 7538 |
. . . . . . 7
⊢ (Ord
𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
6 | 5 | adantr 484 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) |
7 | | peano2b 7601 |
. . . . . 6
⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈
ω) |
8 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑣 = suc 𝐵 → (𝐹‘𝑣) = (𝐹‘suc 𝐵)) |
9 | 8 | psseq2d 4001 |
. . . . . . . . 9
⊢ (𝑣 = suc 𝐵 → ((𝐹‘𝐵) ⊊ (𝐹‘𝑣) ↔ (𝐹‘𝐵) ⊊ (𝐹‘suc 𝐵))) |
10 | 9 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝐵)))) |
11 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑢 → (𝐹‘𝑣) = (𝐹‘𝑢)) |
12 | 11 | psseq2d 4001 |
. . . . . . . . 9
⊢ (𝑣 = 𝑢 → ((𝐹‘𝐵) ⊊ (𝐹‘𝑣) ↔ (𝐹‘𝐵) ⊊ (𝐹‘𝑢))) |
13 | 12 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑢)))) |
14 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑣 = suc 𝑢 → (𝐹‘𝑣) = (𝐹‘suc 𝑢)) |
15 | 14 | psseq2d 4001 |
. . . . . . . . 9
⊢ (𝑣 = suc 𝑢 → ((𝐹‘𝐵) ⊊ (𝐹‘𝑣) ↔ (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢))) |
16 | 15 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢)))) |
17 | | fveq2 6663 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐴 → (𝐹‘𝑣) = (𝐹‘𝐴)) |
18 | 17 | psseq2d 4001 |
. . . . . . . . 9
⊢ (𝑣 = 𝐴 → ((𝐹‘𝐵) ⊊ (𝐹‘𝑣) ↔ (𝐹‘𝐵) ⊊ (𝐹‘𝐴))) |
19 | 18 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴)))) |
20 | | inf3lem.1 |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
21 | | inf3lem.2 |
. . . . . . . . . . 11
⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
22 | | inf3lem.4 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
23 | 20, 21, 22, 22 | inf3lem4 9140 |
. . . . . . . . . 10
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐵 ∈ ω
→ (𝐹‘𝐵) ⊊ (𝐹‘suc 𝐵))) |
24 | 23 | com12 32 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐹‘𝐵) ⊊ (𝐹‘suc 𝐵))) |
25 | 7, 24 | sylbir 238 |
. . . . . . . 8
⊢ (suc
𝐵 ∈ ω →
((𝑥 ≠ ∅ ∧
𝑥 ⊆ ∪ 𝑥)
→ (𝐹‘𝐵) ⊊ (𝐹‘suc 𝐵))) |
26 | | vex 3413 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V |
27 | 20, 21, 26, 22 | inf3lem4 9140 |
. . . . . . . . . . 11
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝑢 ∈ ω
→ (𝐹‘𝑢) ⊊ (𝐹‘suc 𝑢))) |
28 | | psstr 4012 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝐵) ⊊ (𝐹‘𝑢) ∧ (𝐹‘𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢)) |
29 | 28 | expcom 417 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹‘𝐵) ⊊ (𝐹‘𝑢) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢))) |
30 | 27, 29 | syl6com 37 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ ((𝐹‘𝐵) ⊊ (𝐹‘𝑢) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢)))) |
31 | 30 | a2d 29 |
. . . . . . . . 9
⊢ (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐹‘𝐵) ⊊ (𝐹‘𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢)))) |
32 | 31 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵 ⊆ 𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘suc 𝑢)))) |
33 | 10, 13, 16, 19, 25, 32 | findsg 7615 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵 ⊆ 𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴))) |
34 | 33 | ex 416 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc
𝐵 ⊆ 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴)))) |
35 | 7, 34 | sylan2b 596 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐵 ⊆ 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴)))) |
36 | 6, 35 | syld 47 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ∈ 𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴)))) |
37 | 36 | impancom 455 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴)))) |
38 | 2, 37 | mpd 15 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴))) |
39 | 38 | com12 32 |
1
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ ((𝐴 ∈ ω
∧ 𝐵 ∈ 𝐴) → (𝐹‘𝐵) ⊊ (𝐹‘𝐴))) |