Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   GIF version

Theorem inf3lem5 9141
 Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9144 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem5 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem5
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7595 . . . 4 ((𝐵𝐴𝐴 ∈ ω) → 𝐵 ∈ ω)
21ancoms 462 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ ω)
3 nnord 7593 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
4 ordsucss 7538 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
53, 4syl 17 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
65adantr 484 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → suc 𝐵𝐴))
7 peano2b 7601 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fveq2 6663 . . . . . . . . . 10 (𝑣 = suc 𝐵 → (𝐹𝑣) = (𝐹‘suc 𝐵))
98psseq2d 4001 . . . . . . . . 9 (𝑣 = suc 𝐵 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
109imbi2d 344 . . . . . . . 8 (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵))))
11 fveq2 6663 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
1211psseq2d 4001 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝑢)))
1312imbi2d 344 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢))))
14 fveq2 6663 . . . . . . . . . 10 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
1514psseq2d 4001 . . . . . . . . 9 (𝑣 = suc 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
1615imbi2d 344 . . . . . . . 8 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
17 fveq2 6663 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1817psseq2d 4001 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝐴)))
1918imbi2d 344 . . . . . . . 8 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
20 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
21 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
22 inf3lem.4 . . . . . . . . . . 11 𝐵 ∈ V
2320, 21, 22, 22inf3lem4 9140 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐵 ∈ ω → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
257, 24sylbir 238 . . . . . . . 8 (suc 𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
26 vex 3413 . . . . . . . . . . . 12 𝑢 ∈ V
2720, 21, 26, 22inf3lem4 9140 . . . . . . . . . . 11 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑢 ∈ ω → (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)))
28 psstr 4012 . . . . . . . . . . . 12 (((𝐹𝐵) ⊊ (𝐹𝑢) ∧ (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))
2928expcom 417 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
3027, 29syl6com 37 . . . . . . . . . 10 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3130a2d 29 . . . . . . . . 9 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3231ad2antrr 725 . . . . . . . 8 (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3310, 13, 16, 19, 25, 32findsg 7615 . . . . . . 7 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3433ex 416 . . . . . 6 ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
357, 34sylan2b 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
366, 35syld 47 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
3736impancom 455 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
382, 37mpd 15 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3938com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {crab 3074  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860   ⊊ wpss 3861  ∅c0 4227  ∪ cuni 4801   ↦ cmpt 5116   ↾ cres 5530  Ord word 6173  suc csuc 6176  ‘cfv 6340  ωcom 7585  reccrdg 8061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465  ax-reg 9102 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-wrecs 7963  df-recs 8024  df-rdg 8062 This theorem is referenced by:  inf3lem6  9142
 Copyright terms: Public domain W3C validator