MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   GIF version

Theorem inf3lem5 9651
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9654 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem5 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem5
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7877 . . . 4 ((𝐵𝐴𝐴 ∈ ω) → 𝐵 ∈ ω)
21ancoms 458 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ ω)
3 nnord 7874 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
4 ordsucss 7817 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
53, 4syl 17 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
65adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → suc 𝐵𝐴))
7 peano2b 7883 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fveq2 6881 . . . . . . . . . 10 (𝑣 = suc 𝐵 → (𝐹𝑣) = (𝐹‘suc 𝐵))
98psseq2d 4076 . . . . . . . . 9 (𝑣 = suc 𝐵 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
109imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵))))
11 fveq2 6881 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
1211psseq2d 4076 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝑢)))
1312imbi2d 340 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢))))
14 fveq2 6881 . . . . . . . . . 10 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
1514psseq2d 4076 . . . . . . . . 9 (𝑣 = suc 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
1615imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
17 fveq2 6881 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1817psseq2d 4076 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝐴)))
1918imbi2d 340 . . . . . . . 8 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
20 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
21 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
22 inf3lem.4 . . . . . . . . . . 11 𝐵 ∈ V
2320, 21, 22, 22inf3lem4 9650 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐵 ∈ ω → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
257, 24sylbir 235 . . . . . . . 8 (suc 𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
26 vex 3468 . . . . . . . . . . . 12 𝑢 ∈ V
2720, 21, 26, 22inf3lem4 9650 . . . . . . . . . . 11 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑢 ∈ ω → (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)))
28 psstr 4087 . . . . . . . . . . . 12 (((𝐹𝐵) ⊊ (𝐹𝑢) ∧ (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))
2928expcom 413 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
3027, 29syl6com 37 . . . . . . . . . 10 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3130a2d 29 . . . . . . . . 9 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3231ad2antrr 726 . . . . . . . 8 (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3310, 13, 16, 19, 25, 32findsg 7898 . . . . . . 7 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3433ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
357, 34sylan2b 594 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
366, 35syld 47 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
3736impancom 451 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
382, 37mpd 15 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3938com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  cin 3930  wss 3931  wpss 3932  c0 4313   cuni 4888  cmpt 5206  cres 5661  Ord word 6356  suc csuc 6359  cfv 6536  ωcom 7866  reccrdg 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  inf3lem6  9652
  Copyright terms: Public domain W3C validator