MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   GIF version

Theorem inf3lem5 9670
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9673 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem5 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem5
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7898 . . . 4 ((𝐵𝐴𝐴 ∈ ω) → 𝐵 ∈ ω)
21ancoms 458 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ ω)
3 nnord 7895 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
4 ordsucss 7838 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
53, 4syl 17 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
65adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → suc 𝐵𝐴))
7 peano2b 7904 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fveq2 6907 . . . . . . . . . 10 (𝑣 = suc 𝐵 → (𝐹𝑣) = (𝐹‘suc 𝐵))
98psseq2d 4106 . . . . . . . . 9 (𝑣 = suc 𝐵 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
109imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵))))
11 fveq2 6907 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
1211psseq2d 4106 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝑢)))
1312imbi2d 340 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢))))
14 fveq2 6907 . . . . . . . . . 10 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
1514psseq2d 4106 . . . . . . . . 9 (𝑣 = suc 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
1615imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
17 fveq2 6907 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1817psseq2d 4106 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝐴)))
1918imbi2d 340 . . . . . . . 8 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
20 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
21 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
22 inf3lem.4 . . . . . . . . . . 11 𝐵 ∈ V
2320, 21, 22, 22inf3lem4 9669 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐵 ∈ ω → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
257, 24sylbir 235 . . . . . . . 8 (suc 𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
26 vex 3482 . . . . . . . . . . . 12 𝑢 ∈ V
2720, 21, 26, 22inf3lem4 9669 . . . . . . . . . . 11 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑢 ∈ ω → (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)))
28 psstr 4117 . . . . . . . . . . . 12 (((𝐹𝐵) ⊊ (𝐹𝑢) ∧ (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))
2928expcom 413 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
3027, 29syl6com 37 . . . . . . . . . 10 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3130a2d 29 . . . . . . . . 9 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3231ad2antrr 726 . . . . . . . 8 (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3310, 13, 16, 19, 25, 32findsg 7920 . . . . . . 7 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3433ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
357, 34sylan2b 594 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
366, 35syld 47 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
3736impancom 451 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
382, 37mpd 15 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3938com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  cin 3962  wss 3963  wpss 3964  c0 4339   cuni 4912  cmpt 5231  cres 5691  Ord word 6385  suc csuc 6388  cfv 6563  ωcom 7887  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-reg 9630
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  inf3lem6  9671
  Copyright terms: Public domain W3C validator