MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   GIF version

Theorem inf3lem5 9528
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9531 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem5 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem5
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7810 . . . 4 ((𝐵𝐴𝐴 ∈ ω) → 𝐵 ∈ ω)
21ancoms 458 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ ω)
3 nnord 7807 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
4 ordsucss 7751 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
53, 4syl 17 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
65adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → suc 𝐵𝐴))
7 peano2b 7816 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fveq2 6822 . . . . . . . . . 10 (𝑣 = suc 𝐵 → (𝐹𝑣) = (𝐹‘suc 𝐵))
98psseq2d 4047 . . . . . . . . 9 (𝑣 = suc 𝐵 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
109imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵))))
11 fveq2 6822 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
1211psseq2d 4047 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝑢)))
1312imbi2d 340 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢))))
14 fveq2 6822 . . . . . . . . . 10 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
1514psseq2d 4047 . . . . . . . . 9 (𝑣 = suc 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
1615imbi2d 340 . . . . . . . 8 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
17 fveq2 6822 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1817psseq2d 4047 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝐴)))
1918imbi2d 340 . . . . . . . 8 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
20 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
21 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
22 inf3lem.4 . . . . . . . . . . 11 𝐵 ∈ V
2320, 21, 22, 22inf3lem4 9527 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐵 ∈ ω → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
257, 24sylbir 235 . . . . . . . 8 (suc 𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
26 vex 3440 . . . . . . . . . . . 12 𝑢 ∈ V
2720, 21, 26, 22inf3lem4 9527 . . . . . . . . . . 11 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑢 ∈ ω → (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)))
28 psstr 4058 . . . . . . . . . . . 12 (((𝐹𝐵) ⊊ (𝐹𝑢) ∧ (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))
2928expcom 413 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
3027, 29syl6com 37 . . . . . . . . . 10 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3130a2d 29 . . . . . . . . 9 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3231ad2antrr 726 . . . . . . . 8 (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3310, 13, 16, 19, 25, 32findsg 7830 . . . . . . 7 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3433ex 412 . . . . . 6 ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
357, 34sylan2b 594 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
366, 35syld 47 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
3736impancom 451 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
382, 37mpd 15 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3938com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cin 3902  wss 3903  wpss 3904  c0 4284   cuni 4858  cmpt 5173  cres 5621  Ord word 6306  suc csuc 6309  cfv 6482  ωcom 7799  reccrdg 8331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-reg 9484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332
This theorem is referenced by:  inf3lem6  9529
  Copyright terms: Public domain W3C validator