MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3OLD Structured version   Visualization version   GIF version

Theorem php3OLD 9259
Description: Obsolete version of php3 9247 as of 26-Nov-2024. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
php3OLD ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php3OLD
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 9015 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 relen 8989 . . . . . . . . 9 Rel ≈
32brrelex1i 5745 . . . . . . . 8 (𝐴𝑥𝐴 ∈ V)
4 pssss 4108 . . . . . . . 8 (𝐵𝐴𝐵𝐴)
5 ssdomg 9039 . . . . . . . . 9 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
65imp 406 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐵𝐴) → 𝐵𝐴)
73, 4, 6syl2an 596 . . . . . . 7 ((𝐴𝑥𝐵𝐴) → 𝐵𝐴)
87adantll 714 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
9 bren 8994 . . . . . . . . 9 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
10 imass2 6123 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
114, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐵𝐴 → (𝑓𝐵) ⊆ (𝑓𝐴))
1211adantl 481 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊆ (𝑓𝐴))
13 pssnel 4477 . . . . . . . . . . . . . . . . 17 (𝐵𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵))
14 eldif 3973 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
15 f1ofn 6850 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥𝑓 Fn 𝐴)
16 difss 4146 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) ⊆ 𝐴
17 fnfvima 7253 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴𝑦 ∈ (𝐴𝐵)) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)))
18173expia 1120 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 Fn 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
1915, 16, 18sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵))))
20 dff1o3 6855 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓:𝐴1-1-onto𝑥 ↔ (𝑓:𝐴onto𝑥 ∧ Fun 𝑓))
21 imadif 6652 . . . . . . . . . . . . . . . . . . . . . . . 24 (Fun 𝑓 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2220, 21simplbiim 504 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ (𝐴𝐵)) = ((𝑓𝐴) ∖ (𝑓𝐵)))
2322eleq2d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝑦) ∈ (𝑓 “ (𝐴𝐵)) ↔ (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
2419, 23sylibd 239 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → (𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵))))
25 n0i 4346 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑦) ∈ ((𝑓𝐴) ∖ (𝑓𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
2624, 25syl6 35 . . . . . . . . . . . . . . . . . . . 20 (𝑓:𝐴1-1-onto𝑥 → (𝑦 ∈ (𝐴𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2714, 26biimtrrid 243 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝐴1-1-onto𝑥 → ((𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2827exlimdv 1931 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅))
2928imp 406 . . . . . . . . . . . . . . . . 17 ((𝑓:𝐴1-1-onto𝑥 ∧ ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝐵)) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3013, 29sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
31 ssdif0 4372 . . . . . . . . . . . . . . . 16 ((𝑓𝐴) ⊆ (𝑓𝐵) ↔ ((𝑓𝐴) ∖ (𝑓𝐵)) = ∅)
3230, 31sylnibr 329 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ¬ (𝑓𝐴) ⊆ (𝑓𝐵))
33 dfpss3 4099 . . . . . . . . . . . . . . 15 ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ ((𝑓𝐵) ⊆ (𝑓𝐴) ∧ ¬ (𝑓𝐴) ⊆ (𝑓𝐵)))
3412, 32, 33sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ (𝑓𝐴))
35 imadmrn 6090 . . . . . . . . . . . . . . . . 17 (𝑓 “ dom 𝑓) = ran 𝑓
36 f1odm 6853 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥 → dom 𝑓 = 𝐴)
3736imaeq2d 6080 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → (𝑓 “ dom 𝑓) = (𝑓𝐴))
38 f1ofo 6856 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴onto𝑥)
39 forn 6824 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴onto𝑥 → ran 𝑓 = 𝑥)
4038, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴1-1-onto𝑥 → ran 𝑓 = 𝑥)
4135, 37, 403eqtr3a 2799 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥 → (𝑓𝐴) = 𝑥)
4241psseq2d 4106 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1-onto𝑥 → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4342adantr 480 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → ((𝑓𝐵) ⊊ (𝑓𝐴) ↔ (𝑓𝐵) ⊊ 𝑥))
4434, 43mpbid 232 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵) ⊊ 𝑥)
45 php 9245 . . . . . . . . . . . . 13 ((𝑥 ∈ ω ∧ (𝑓𝐵) ⊊ 𝑥) → ¬ 𝑥 ≈ (𝑓𝐵))
4644, 45sylan2 593 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥 ≈ (𝑓𝐵))
47 f1of1 6848 . . . . . . . . . . . . . . . 16 (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1𝑥)
48 f1ores 6863 . . . . . . . . . . . . . . . 16 ((𝑓:𝐴1-1𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
4947, 4, 48syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵))
50 vex 3482 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
5150resex 6049 . . . . . . . . . . . . . . . . 17 (𝑓𝐵) ∈ V
52 f1oeq1 6837 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑓𝐵) → (𝑦:𝐵1-1-onto→(𝑓𝐵) ↔ (𝑓𝐵):𝐵1-1-onto→(𝑓𝐵)))
5351, 52spcev 3606 . . . . . . . . . . . . . . . 16 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
54 bren 8994 . . . . . . . . . . . . . . . 16 (𝐵 ≈ (𝑓𝐵) ↔ ∃𝑦 𝑦:𝐵1-1-onto→(𝑓𝐵))
5553, 54sylibr 234 . . . . . . . . . . . . . . 15 ((𝑓𝐵):𝐵1-1-onto→(𝑓𝐵) → 𝐵 ≈ (𝑓𝐵))
5649, 55syl 17 . . . . . . . . . . . . . 14 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → 𝐵 ≈ (𝑓𝐵))
57 entr 9045 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ≈ (𝑓𝐵)) → 𝑥 ≈ (𝑓𝐵))
5857expcom 413 . . . . . . . . . . . . . 14 (𝐵 ≈ (𝑓𝐵) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
5956, 58syl 17 . . . . . . . . . . . . 13 ((𝑓:𝐴1-1-onto𝑥𝐵𝐴) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6059adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → (𝑥𝐵𝑥 ≈ (𝑓𝐵)))
6146, 60mtod 198 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ (𝑓:𝐴1-1-onto𝑥𝐵𝐴)) → ¬ 𝑥𝐵)
6261exp32 420 . . . . . . . . . 10 (𝑥 ∈ ω → (𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6362exlimdv 1931 . . . . . . . . 9 (𝑥 ∈ ω → (∃𝑓 𝑓:𝐴1-1-onto𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
649, 63biimtrid 242 . . . . . . . 8 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴 → ¬ 𝑥𝐵)))
6564imp31 417 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝑥𝐵)
66 entr 9045 . . . . . . . . . 10 ((𝐵𝐴𝐴𝑥) → 𝐵𝑥)
6766ex 412 . . . . . . . . 9 (𝐵𝐴 → (𝐴𝑥𝐵𝑥))
68 ensym 9042 . . . . . . . . 9 (𝐵𝑥𝑥𝐵)
6967, 68syl6com 37 . . . . . . . 8 (𝐴𝑥 → (𝐵𝐴𝑥𝐵))
7069ad2antlr 727 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → (𝐵𝐴𝑥𝐵))
7165, 70mtod 198 . . . . . 6 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → ¬ 𝐵𝐴)
72 brsdom 9014 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐴))
738, 71, 72sylanbrc 583 . . . . 5 (((𝑥 ∈ ω ∧ 𝐴𝑥) ∧ 𝐵𝐴) → 𝐵𝐴)
7473exp31 419 . . . 4 (𝑥 ∈ ω → (𝐴𝑥 → (𝐵𝐴𝐵𝐴)))
7574rexlimiv 3146 . . 3 (∃𝑥 ∈ ω 𝐴𝑥 → (𝐵𝐴𝐵𝐴))
761, 75sylbi 217 . 2 (𝐴 ∈ Fin → (𝐵𝐴𝐵𝐴))
7776imp 406 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wrex 3068  Vcvv 3478  cdif 3960  wss 3963  wpss 3964  c0 4339   class class class wbr 5148  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  Fun wfun 6557   Fn wfn 6558  1-1wf1 6560  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  ωcom 7887  cen 8981  cdom 8982  csdm 8983  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator