Step | Hyp | Ref
| Expression |
1 | | isfi 8797 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
2 | | relen 8769 |
. . . . . . . . 9
⊢ Rel
≈ |
3 | 2 | brrelex1i 5654 |
. . . . . . . 8
⊢ (𝐴 ≈ 𝑥 → 𝐴 ∈ V) |
4 | | pssss 4036 |
. . . . . . . 8
⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) |
5 | | ssdomg 8821 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) |
6 | 5 | imp 408 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → 𝐵 ≼ 𝐴) |
7 | 3, 4, 6 | syl2an 597 |
. . . . . . 7
⊢ ((𝐴 ≈ 𝑥 ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≼ 𝐴) |
8 | 7 | adantll 712 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≼ 𝐴) |
9 | | bren 8774 |
. . . . . . . . 9
⊢ (𝐴 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝑥) |
10 | | imass2 6020 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ⊆ 𝐴 → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
11 | 4, 10 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ⊊ 𝐴 → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
12 | 11 | adantl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴)) |
13 | | pssnel 4410 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ⊊ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
14 | | eldif 3902 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) |
15 | | f1ofn 6747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓 Fn 𝐴) |
16 | | difss 4072 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
17 | | fnfvima 7141 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝑦 ∈ (𝐴 ∖ 𝐵)) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵))) |
18 | 17 | 3expia 1121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn 𝐴 ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)))) |
19 | 15, 16, 18 | sylancl 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)))) |
20 | | dff1o3 6752 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓:𝐴–1-1-onto→𝑥 ↔ (𝑓:𝐴–onto→𝑥 ∧ Fun ◡𝑓)) |
21 | | imadif 6547 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Fun
◡𝑓 → (𝑓 “ (𝐴 ∖ 𝐵)) = ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵))) |
22 | 20, 21 | simplbiim 506 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ (𝐴 ∖ 𝐵)) = ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵))) |
23 | 22 | eleq2d 2822 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑓‘𝑦) ∈ (𝑓 “ (𝐴 ∖ 𝐵)) ↔ (𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)))) |
24 | 19, 23 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → (𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)))) |
25 | | n0i 4273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑦) ∈ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
26 | 24, 25 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑦 ∈ (𝐴 ∖ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
27 | 14, 26 | syl5bir 243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
28 | 27 | exlimdv 1934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅)) |
29 | 28 | imp 408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
30 | 13, 29 | sylan2 594 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ¬ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
31 | | ssdif0 4303 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵) ↔ ((𝑓 “ 𝐴) ∖ (𝑓 “ 𝐵)) = ∅) |
32 | 30, 31 | sylnibr 329 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ¬ (𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵)) |
33 | | dfpss3 4027 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ ((𝑓 “ 𝐵) ⊆ (𝑓 “ 𝐴) ∧ ¬ (𝑓 “ 𝐴) ⊆ (𝑓 “ 𝐵))) |
34 | 12, 32, 33 | sylanbrc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴)) |
35 | | imadmrn 5989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
36 | | f1odm 6750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝑥 → dom 𝑓 = 𝐴) |
37 | 36 | imaeq2d 5979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ dom 𝑓) = (𝑓 “ 𝐴)) |
38 | | f1ofo 6753 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓:𝐴–onto→𝑥) |
39 | | forn 6721 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴–onto→𝑥 → ran 𝑓 = 𝑥) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ran 𝑓 = 𝑥) |
41 | 35, 37, 40 | 3eqtr3a 2800 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴–1-1-onto→𝑥 → (𝑓 “ 𝐴) = 𝑥) |
42 | 41 | psseq2d 4034 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴–1-1-onto→𝑥 → ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ (𝑓 “ 𝐵) ⊊ 𝑥)) |
43 | 42 | adantr 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → ((𝑓 “ 𝐵) ⊊ (𝑓 “ 𝐴) ↔ (𝑓 “ 𝐵) ⊊ 𝑥)) |
44 | 34, 43 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 “ 𝐵) ⊊ 𝑥) |
45 | | php 9031 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ω ∧ (𝑓 “ 𝐵) ⊊ 𝑥) → ¬ 𝑥 ≈ (𝑓 “ 𝐵)) |
46 | 44, 45 | sylan2 594 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → ¬ 𝑥 ≈ (𝑓 “ 𝐵)) |
47 | | f1of1 6745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴–1-1-onto→𝑥 → 𝑓:𝐴–1-1→𝑥) |
48 | | f1ores 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝐴–1-1→𝑥 ∧ 𝐵 ⊆ 𝐴) → (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵)) |
49 | 47, 4, 48 | syl2an 597 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵)) |
50 | | vex 3441 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
51 | 50 | resex 5951 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ↾ 𝐵) ∈ V |
52 | | f1oeq1 6734 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑓 ↾ 𝐵) → (𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵) ↔ (𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵))) |
53 | 51, 52 | spcev 3550 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵) → ∃𝑦 𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵)) |
54 | | bren 8774 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ≈ (𝑓 “ 𝐵) ↔ ∃𝑦 𝑦:𝐵–1-1-onto→(𝑓 “ 𝐵)) |
55 | 53, 54 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ↾ 𝐵):𝐵–1-1-onto→(𝑓 “ 𝐵) → 𝐵 ≈ (𝑓 “ 𝐵)) |
56 | 49, 55 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≈ (𝑓 “ 𝐵)) |
57 | | entr 8827 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ≈ 𝐵 ∧ 𝐵 ≈ (𝑓 “ 𝐵)) → 𝑥 ≈ (𝑓 “ 𝐵)) |
58 | 57 | expcom 415 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ≈ (𝑓 “ 𝐵) → (𝑥 ≈ 𝐵 → 𝑥 ≈ (𝑓 “ 𝐵))) |
59 | 56, 58 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴) → (𝑥 ≈ 𝐵 → 𝑥 ≈ (𝑓 “ 𝐵))) |
60 | 59 | adantl 483 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → (𝑥 ≈ 𝐵 → 𝑥 ≈ (𝑓 “ 𝐵))) |
61 | 46, 60 | mtod 197 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ (𝑓:𝐴–1-1-onto→𝑥 ∧ 𝐵 ⊊ 𝐴)) → ¬ 𝑥 ≈ 𝐵) |
62 | 61 | exp32 422 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ω → (𝑓:𝐴–1-1-onto→𝑥 → (𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵))) |
63 | 62 | exlimdv 1934 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω →
(∃𝑓 𝑓:𝐴–1-1-onto→𝑥 → (𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵))) |
64 | 9, 63 | biimtrid 241 |
. . . . . . . 8
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → ¬ 𝑥 ≈ 𝐵))) |
65 | 64 | imp31 419 |
. . . . . . 7
⊢ (((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) ∧ 𝐵 ⊊ 𝐴) → ¬ 𝑥 ≈ 𝐵) |
66 | | entr 8827 |
. . . . . . . . . 10
⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≈ 𝑥) → 𝐵 ≈ 𝑥) |
67 | 66 | ex 414 |
. . . . . . . . 9
⊢ (𝐵 ≈ 𝐴 → (𝐴 ≈ 𝑥 → 𝐵 ≈ 𝑥)) |
68 | | ensym 8824 |
. . . . . . . . 9
⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) |
69 | 67, 68 | syl6com 37 |
. . . . . . . 8
⊢ (𝐴 ≈ 𝑥 → (𝐵 ≈ 𝐴 → 𝑥 ≈ 𝐵)) |
70 | 69 | ad2antlr 725 |
. . . . . . 7
⊢ (((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) ∧ 𝐵 ⊊ 𝐴) → (𝐵 ≈ 𝐴 → 𝑥 ≈ 𝐵)) |
71 | 65, 70 | mtod 197 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐵 ≈ 𝐴) |
72 | | brsdom 8796 |
. . . . . 6
⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) |
73 | 8, 71, 72 | sylanbrc 584 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥) ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
74 | 73 | exp31 421 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴))) |
75 | 74 | rexlimiv 3142 |
. . 3
⊢
(∃𝑥 ∈
ω 𝐴 ≈ 𝑥 → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
76 | 1, 75 | sylbi 216 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
77 | 76 | imp 408 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |