Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat Structured version   Visualization version   GIF version

Theorem lsatcvat 36346
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 30169 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
Assertion
Ref Expression
lsatcvat (𝜑𝑈𝐴)

Proof of Theorem lsatcvat
StepHypRef Expression
1 lsatcvat.o . . 3 0 = (0g𝑊)
2 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lsatcvat.p . . 3 = (LSSum‘𝑊)
4 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑊 ∈ LVec)
7 lsatcvat.u . . . 4 (𝜑𝑈𝑆)
87adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝑆)
9 lsatcvat.q . . . 4 (𝜑𝑄𝐴)
109adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑄𝐴)
11 lsatcvat.r . . . 4 (𝜑𝑅𝐴)
1211adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑅𝐴)
13 lsatcvat.n . . . 4 (𝜑𝑈 ≠ { 0 })
1413adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ≠ { 0 })
15 lsatcvat.l . . . 4 (𝜑𝑈 ⊊ (𝑄 𝑅))
1615adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ⊊ (𝑄 𝑅))
17 simpr 488 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → ¬ 𝑄𝑈)
181, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17lsatcvatlem 36345 . 2 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝐴)
195adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑊 ∈ LVec)
207adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝑆)
2111adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑅𝐴)
229adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑄𝐴)
2313adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ≠ { 0 })
24 lveclmod 19871 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
255, 24syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
26 lmodabl 19674 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2725, 26syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
282lsssssubg 19723 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
2925, 28syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
302, 4, 25, 9lsatlssel 36293 . . . . . . . 8 (𝜑𝑄𝑆)
3129, 30sseldd 3916 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
322, 4, 25, 11lsatlssel 36293 . . . . . . . 8 (𝜑𝑅𝑆)
3329, 32sseldd 3916 . . . . . . 7 (𝜑𝑅 ∈ (SubGrp‘𝑊))
343lsmcom 18971 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
3527, 31, 33, 34syl3anc 1368 . . . . . 6 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3635psseq2d 4021 . . . . 5 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) ↔ 𝑈 ⊊ (𝑅 𝑄)))
3715, 36mpbid 235 . . . 4 (𝜑𝑈 ⊊ (𝑅 𝑄))
3837adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ⊊ (𝑅 𝑄))
39 simpr 488 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → ¬ 𝑅𝑈)
401, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39lsatcvatlem 36345 . 2 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝐴)
4129, 7sseldd 3916 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
423lsmlub 18782 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
4331, 33, 41, 42syl3anc 1368 . . . . . 6 (𝜑 → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
44 ssnpss 4031 . . . . . 6 ((𝑄 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 𝑅))
4543, 44syl6bi 256 . . . . 5 (𝜑 → ((𝑄𝑈𝑅𝑈) → ¬ 𝑈 ⊊ (𝑄 𝑅)))
4645con2d 136 . . . 4 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → ¬ (𝑄𝑈𝑅𝑈)))
47 ianor 979 . . . 4 (¬ (𝑄𝑈𝑅𝑈) ↔ (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
4846, 47syl6ib 254 . . 3 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈)))
4915, 48mpd 15 . 2 (𝜑 → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
5018, 40, 49mpjaodan 956 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  wss 3881  wpss 3882  {csn 4525  cfv 6324  (class class class)co 7135  0gc0g 16705  SubGrpcsubg 18265  LSSumclsm 18751  Abelcabl 18899  LModclmod 19627  LSubSpclss 19696  LVecclvec 19867  LSAtomsclsa 36270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lcv 36315
This theorem is referenced by:  lsatcvat2  36347
  Copyright terms: Public domain W3C validator