![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat | Structured version Visualization version GIF version |
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 32418 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat.o | ⊢ 0 = (0g‘𝑊) |
lsatcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
lsatcvat.l | ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcvat.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
2 | lsatcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
7 | lsatcvat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lsatcvat.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
11 | lsatcvat.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
13 | lsatcvat.n | . . . 4 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
15 | lsatcvat.l | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) | |
18 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17 | lsatcvatlem 39005 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
19 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑊 ∈ LVec) |
20 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
21 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
22 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
23 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
24 | lveclmod 21128 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 5, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) |
26 | lmodabl 20929 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Abel) |
28 | 2 | lsssssubg 20979 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
29 | 25, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
30 | 2, 4, 25, 9 | lsatlssel 38953 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
31 | 29, 30 | sseldd 4009 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 2, 4, 25, 11 | lsatlssel 38953 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
33 | 29, 32 | sseldd 4009 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
34 | 3 | lsmcom 19900 | . . . . . . 7 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
35 | 27, 31, 33, 34 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
36 | 35 | psseq2d 4119 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) ↔ 𝑈 ⊊ (𝑅 ⊕ 𝑄))) |
37 | 15, 36 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
38 | 37 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
39 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → ¬ 𝑅 ⊆ 𝑈) | |
40 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39 | lsatcvatlem 39005 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
41 | 29, 7 | sseldd 4009 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
42 | 3 | lsmlub 19706 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
43 | 31, 33, 41, 42 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
44 | ssnpss 4129 | . . . . . 6 ⊢ ((𝑄 ⊕ 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
45 | 43, 44 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅))) |
46 | 45 | con2d 134 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → ¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈))) |
47 | ianor 982 | . . . 4 ⊢ (¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) | |
48 | 46, 47 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈))) |
49 | 15, 48 | mpd 15 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) |
50 | 18, 40, 49 | mpjaodan 959 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 {csn 4648 ‘cfv 6573 (class class class)co 7448 0gc0g 17499 SubGrpcsubg 19160 LSSumclsm 19676 Abelcabl 19823 LModclmod 20880 LSubSpclss 20952 LVecclvec 21124 LSAtomsclsa 38930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lcv 38975 |
This theorem is referenced by: lsatcvat2 39007 |
Copyright terms: Public domain | W3C validator |