![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat | Structured version Visualization version GIF version |
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 29770 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat.o | ⊢ 0 = (0g‘𝑊) |
lsatcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
lsatcvat.l | ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcvat.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
2 | lsatcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
7 | lsatcvat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lsatcvat.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 9 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
11 | lsatcvat.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
12 | 11 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
13 | lsatcvat.n | . . . 4 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
14 | 13 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
15 | lsatcvat.l | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
16 | 15 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
17 | simpr 478 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) | |
18 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17 | lsatcvatlem 35070 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
19 | 5 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑊 ∈ LVec) |
20 | 7 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
21 | 11 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
22 | 9 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
23 | 13 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
24 | lveclmod 19427 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 5, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) |
26 | lmodabl 19228 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Abel) |
28 | 2 | lsssssubg 19279 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
29 | 25, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
30 | 2, 4, 25, 9 | lsatlssel 35018 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
31 | 29, 30 | sseldd 3799 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 2, 4, 25, 11 | lsatlssel 35018 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
33 | 29, 32 | sseldd 3799 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
34 | 3 | lsmcom 18576 | . . . . . . 7 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
35 | 27, 31, 33, 34 | syl3anc 1491 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
36 | 35 | psseq2d 3897 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) ↔ 𝑈 ⊊ (𝑅 ⊕ 𝑄))) |
37 | 15, 36 | mpbid 224 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
38 | 37 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
39 | simpr 478 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → ¬ 𝑅 ⊆ 𝑈) | |
40 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39 | lsatcvatlem 35070 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
41 | 29, 7 | sseldd 3799 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
42 | 3 | lsmlub 18391 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
43 | 31, 33, 41, 42 | syl3anc 1491 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
44 | ssnpss 3907 | . . . . . 6 ⊢ ((𝑄 ⊕ 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
45 | 43, 44 | syl6bi 245 | . . . . 5 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅))) |
46 | 45 | con2d 132 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → ¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈))) |
47 | ianor 1005 | . . . 4 ⊢ (¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) | |
48 | 46, 47 | syl6ib 243 | . . 3 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈))) |
49 | 15, 48 | mpd 15 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) |
50 | 18, 40, 49 | mpjaodan 982 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ⊆ wss 3769 ⊊ wpss 3770 {csn 4368 ‘cfv 6101 (class class class)co 6878 0gc0g 16415 SubGrpcsubg 17901 LSSumclsm 18362 Abelcabl 18509 LModclmod 19181 LSubSpclss 19250 LVecclvec 19423 LSAtomsclsa 34995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-0g 16417 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-subg 17904 df-cntz 18062 df-oppg 18088 df-lsm 18364 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-drng 19067 df-lmod 19183 df-lss 19251 df-lsp 19293 df-lvec 19424 df-lsatoms 34997 df-lcv 35040 |
This theorem is referenced by: lsatcvat2 35072 |
Copyright terms: Public domain | W3C validator |