Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcvat Structured version   Visualization version   GIF version

Theorem lsatcvat 36814
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 30480 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcvat.o 0 = (0g𝑊)
lsatcvat.s 𝑆 = (LSubSp‘𝑊)
lsatcvat.p = (LSSum‘𝑊)
lsatcvat.a 𝐴 = (LSAtoms‘𝑊)
lsatcvat.w (𝜑𝑊 ∈ LVec)
lsatcvat.u (𝜑𝑈𝑆)
lsatcvat.q (𝜑𝑄𝐴)
lsatcvat.r (𝜑𝑅𝐴)
lsatcvat.n (𝜑𝑈 ≠ { 0 })
lsatcvat.l (𝜑𝑈 ⊊ (𝑄 𝑅))
Assertion
Ref Expression
lsatcvat (𝜑𝑈𝐴)

Proof of Theorem lsatcvat
StepHypRef Expression
1 lsatcvat.o . . 3 0 = (0g𝑊)
2 lsatcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lsatcvat.p . . 3 = (LSSum‘𝑊)
4 lsatcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
5 lsatcvat.w . . . 4 (𝜑𝑊 ∈ LVec)
65adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑊 ∈ LVec)
7 lsatcvat.u . . . 4 (𝜑𝑈𝑆)
87adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝑆)
9 lsatcvat.q . . . 4 (𝜑𝑄𝐴)
109adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑄𝐴)
11 lsatcvat.r . . . 4 (𝜑𝑅𝐴)
1211adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑅𝐴)
13 lsatcvat.n . . . 4 (𝜑𝑈 ≠ { 0 })
1413adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ≠ { 0 })
15 lsatcvat.l . . . 4 (𝜑𝑈 ⊊ (𝑄 𝑅))
1615adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈 ⊊ (𝑄 𝑅))
17 simpr 488 . . 3 ((𝜑 ∧ ¬ 𝑄𝑈) → ¬ 𝑄𝑈)
181, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17lsatcvatlem 36813 . 2 ((𝜑 ∧ ¬ 𝑄𝑈) → 𝑈𝐴)
195adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑊 ∈ LVec)
207adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝑆)
2111adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑅𝐴)
229adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑄𝐴)
2313adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ≠ { 0 })
24 lveclmod 20156 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
255, 24syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
26 lmodabl 19959 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
2725, 26syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
282lsssssubg 20008 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
2925, 28syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
302, 4, 25, 9lsatlssel 36761 . . . . . . . 8 (𝜑𝑄𝑆)
3129, 30sseldd 3911 . . . . . . 7 (𝜑𝑄 ∈ (SubGrp‘𝑊))
322, 4, 25, 11lsatlssel 36761 . . . . . . . 8 (𝜑𝑅𝑆)
3329, 32sseldd 3911 . . . . . . 7 (𝜑𝑅 ∈ (SubGrp‘𝑊))
343lsmcom 19256 . . . . . . 7 ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 𝑅) = (𝑅 𝑄))
3527, 31, 33, 34syl3anc 1373 . . . . . 6 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3635psseq2d 4017 . . . . 5 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) ↔ 𝑈 ⊊ (𝑅 𝑄)))
3715, 36mpbid 235 . . . 4 (𝜑𝑈 ⊊ (𝑅 𝑄))
3837adantr 484 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈 ⊊ (𝑅 𝑄))
39 simpr 488 . . 3 ((𝜑 ∧ ¬ 𝑅𝑈) → ¬ 𝑅𝑈)
401, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39lsatcvatlem 36813 . 2 ((𝜑 ∧ ¬ 𝑅𝑈) → 𝑈𝐴)
4129, 7sseldd 3911 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
423lsmlub 19067 . . . . . . 7 ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
4331, 33, 41, 42syl3anc 1373 . . . . . 6 (𝜑 → ((𝑄𝑈𝑅𝑈) ↔ (𝑄 𝑅) ⊆ 𝑈))
44 ssnpss 4027 . . . . . 6 ((𝑄 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 𝑅))
4543, 44syl6bi 256 . . . . 5 (𝜑 → ((𝑄𝑈𝑅𝑈) → ¬ 𝑈 ⊊ (𝑄 𝑅)))
4645con2d 136 . . . 4 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → ¬ (𝑄𝑈𝑅𝑈)))
47 ianor 982 . . . 4 (¬ (𝑄𝑈𝑅𝑈) ↔ (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
4846, 47syl6ib 254 . . 3 (𝜑 → (𝑈 ⊊ (𝑄 𝑅) → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈)))
4915, 48mpd 15 . 2 (𝜑 → (¬ 𝑄𝑈 ∨ ¬ 𝑅𝑈))
5018, 40, 49mpjaodan 959 1 (𝜑𝑈𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2111  wne 2941  wss 3875  wpss 3876  {csn 4550  cfv 6389  (class class class)co 7222  0gc0g 16957  SubGrpcsubg 18550  LSSumclsm 19036  Abelcabl 19184  LModclmod 19912  LSubSpclss 19981  LVecclvec 20152  LSAtomsclsa 36738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818  ax-pre-mulgt0 10819
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-pss 3894  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4829  df-int 4869  df-iun 4915  df-iin 4916  df-br 5063  df-opab 5125  df-mpt 5145  df-tr 5171  df-id 5464  df-eprel 5469  df-po 5477  df-so 5478  df-fr 5518  df-we 5520  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-pred 6169  df-ord 6225  df-on 6226  df-lim 6227  df-suc 6228  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-om 7654  df-1st 7770  df-2nd 7771  df-tpos 7977  df-wrecs 8056  df-recs 8117  df-rdg 8155  df-1o 8211  df-er 8400  df-en 8636  df-dom 8637  df-sdom 8638  df-fin 8639  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-sub 11077  df-neg 11078  df-nn 11844  df-2 11906  df-3 11907  df-sets 16730  df-slot 16748  df-ndx 16758  df-base 16774  df-ress 16798  df-plusg 16828  df-mulr 16829  df-0g 16959  df-mre 17102  df-mrc 17103  df-acs 17105  df-mgm 18127  df-sgrp 18176  df-mnd 18187  df-submnd 18232  df-grp 18381  df-minusg 18382  df-sbg 18383  df-subg 18553  df-cntz 18724  df-oppg 18751  df-lsm 19038  df-cmn 19185  df-abl 19186  df-mgp 19518  df-ur 19530  df-ring 19577  df-oppr 19654  df-dvdsr 19672  df-unit 19673  df-invr 19703  df-drng 19782  df-lmod 19914  df-lss 19982  df-lsp 20022  df-lvec 20153  df-lsatoms 36740  df-lcv 36783
This theorem is referenced by:  lsatcvat2  36815
  Copyright terms: Public domain W3C validator