| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat | Structured version Visualization version GIF version | ||
| Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 32367 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcvat.o | ⊢ 0 = (0g‘𝑊) |
| lsatcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsatcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lsatcvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lsatcvat.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
| lsatcvat.l | ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
| Ref | Expression |
|---|---|
| lsatcvat | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcvat.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 2 | lsatcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lsatcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
| 4 | lsatcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | lsatcvat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
| 7 | lsatcvat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
| 9 | lsatcvat.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
| 11 | lsatcvat.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
| 13 | lsatcvat.n | . . . 4 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
| 15 | lsatcvat.l | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
| 17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) | |
| 18 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17 | lsatcvatlem 39067 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
| 19 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑊 ∈ LVec) |
| 20 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
| 21 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
| 22 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
| 23 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
| 24 | lveclmod 21064 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 25 | 5, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 26 | lmodabl 20866 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Abel) |
| 28 | 2 | lsssssubg 20915 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 29 | 25, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 30 | 2, 4, 25, 9 | lsatlssel 39015 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
| 31 | 29, 30 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 32 | 2, 4, 25, 11 | lsatlssel 39015 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 33 | 29, 32 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
| 34 | 3 | lsmcom 19839 | . . . . . . 7 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 35 | 27, 31, 33, 34 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
| 36 | 35 | psseq2d 4071 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) ↔ 𝑈 ⊊ (𝑅 ⊕ 𝑄))) |
| 37 | 15, 36 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
| 38 | 37 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
| 39 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → ¬ 𝑅 ⊆ 𝑈) | |
| 40 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39 | lsatcvatlem 39067 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
| 41 | 29, 7 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 42 | 3 | lsmlub 19645 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
| 43 | 31, 33, 41, 42 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
| 44 | ssnpss 4081 | . . . . . 6 ⊢ ((𝑄 ⊕ 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
| 45 | 43, 44 | biimtrdi 253 | . . . . 5 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅))) |
| 46 | 45 | con2d 134 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → ¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈))) |
| 47 | ianor 983 | . . . 4 ⊢ (¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) | |
| 48 | 46, 47 | imbitrdi 251 | . . 3 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈))) |
| 49 | 15, 48 | mpd 15 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) |
| 50 | 18, 40, 49 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 {csn 4601 ‘cfv 6531 (class class class)co 7405 0gc0g 17453 SubGrpcsubg 19103 LSSumclsm 19615 Abelcabl 19762 LModclmod 20817 LSubSpclss 20888 LVecclvec 21060 LSAtomsclsa 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lcv 39037 |
| This theorem is referenced by: lsatcvat2 39069 |
| Copyright terms: Public domain | W3C validator |