![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcvat | Structured version Visualization version GIF version |
Description: A nonzero subspace less than the sum of two atoms is an atom. (atcvati 32190 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcvat.o | ⊢ 0 = (0g‘𝑊) |
lsatcvat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatcvat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcvat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcvat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcvat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatcvat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcvat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lsatcvat.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
lsatcvat.l | ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
Ref | Expression |
---|---|
lsatcvat | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcvat.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
2 | lsatcvat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lsatcvat.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lsatcvat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | lsatcvat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑊 ∈ LVec) |
7 | lsatcvat.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
9 | lsatcvat.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
11 | lsatcvat.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
13 | lsatcvat.n | . . . 4 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
15 | lsatcvat.l | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ⊊ (𝑄 ⊕ 𝑅)) |
17 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → ¬ 𝑄 ⊆ 𝑈) | |
18 | 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 17 | lsatcvatlem 38516 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑄 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
19 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑊 ∈ LVec) |
20 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝑆) |
21 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑅 ∈ 𝐴) |
22 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑄 ∈ 𝐴) |
23 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ≠ { 0 }) |
24 | lveclmod 20985 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
25 | 5, 24 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) |
26 | lmodabl 20786 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
27 | 25, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ Abel) |
28 | 2 | lsssssubg 20836 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
29 | 25, 28 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
30 | 2, 4, 25, 9 | lsatlssel 38464 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝑆) |
31 | 29, 30 | sseldd 3980 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
32 | 2, 4, 25, 11 | lsatlssel 38464 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
33 | 29, 32 | sseldd 3980 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ (SubGrp‘𝑊)) |
34 | 3 | lsmcom 19807 | . . . . . . 7 ⊢ ((𝑊 ∈ Abel ∧ 𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊)) → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
35 | 27, 31, 33, 34 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) = (𝑅 ⊕ 𝑄)) |
36 | 35 | psseq2d 4090 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) ↔ 𝑈 ⊊ (𝑅 ⊕ 𝑄))) |
37 | 15, 36 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
38 | 37 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ⊊ (𝑅 ⊕ 𝑄)) |
39 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → ¬ 𝑅 ⊆ 𝑈) | |
40 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 38, 39 | lsatcvatlem 38516 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑅 ⊆ 𝑈) → 𝑈 ∈ 𝐴) |
41 | 29, 7 | sseldd 3980 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
42 | 3 | lsmlub 19613 | . . . . . . 7 ⊢ ((𝑄 ∈ (SubGrp‘𝑊) ∧ 𝑅 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
43 | 31, 33, 41, 42 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (𝑄 ⊕ 𝑅) ⊆ 𝑈)) |
44 | ssnpss 4100 | . . . . . 6 ⊢ ((𝑄 ⊕ 𝑅) ⊆ 𝑈 → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅)) | |
45 | 43, 44 | syl6bi 253 | . . . . 5 ⊢ (𝜑 → ((𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) → ¬ 𝑈 ⊊ (𝑄 ⊕ 𝑅))) |
46 | 45 | con2d 134 | . . . 4 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → ¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈))) |
47 | ianor 980 | . . . 4 ⊢ (¬ (𝑄 ⊆ 𝑈 ∧ 𝑅 ⊆ 𝑈) ↔ (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) | |
48 | 46, 47 | imbitrdi 250 | . . 3 ⊢ (𝜑 → (𝑈 ⊊ (𝑄 ⊕ 𝑅) → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈))) |
49 | 15, 48 | mpd 15 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ∨ ¬ 𝑅 ⊆ 𝑈)) |
50 | 18, 40, 49 | mpjaodan 957 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ⊆ wss 3945 ⊊ wpss 3946 {csn 4625 ‘cfv 6543 (class class class)co 7415 0gc0g 17415 SubGrpcsubg 19069 LSSumclsm 19583 Abelcabl 19730 LModclmod 20737 LSubSpclss 20809 LVecclvec 20981 LSAtomsclsa 38441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-0g 17417 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-subg 19072 df-cntz 19262 df-oppg 19291 df-lsm 19585 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-drng 20620 df-lmod 20739 df-lss 20810 df-lsp 20850 df-lvec 20982 df-lsatoms 38443 df-lcv 38486 |
This theorem is referenced by: lsatcvat2 38518 |
Copyright terms: Public domain | W3C validator |