![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atexch | Structured version Visualization version GIF version |
Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in [MegPav2000] p. 2345 (PDF p. 8) (use atnemeq0 29951 to obtain atom inequality). (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atexch | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 29918 | . . . . . 6 ⊢ (𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) | |
2 | chub2 29082 | . . . . . . 7 ⊢ ((𝐶 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐶)) | |
3 | 2 | ancoms 451 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐶)) |
4 | 1, 3 | sylan2 584 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐶)) |
5 | 4 | 3adant2 1112 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐶)) |
6 | 5 | adantr 473 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐶)) |
7 | cvp 29949 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | |
8 | atelch 29918 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
9 | chjcl 28931 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) | |
10 | 8, 9 | sylan2 584 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) |
11 | cvpss 29859 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) → (𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵) → 𝐴 ⊊ (𝐴 ∨ℋ 𝐵))) | |
12 | 10, 11 | syldan 583 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵) → 𝐴 ⊊ (𝐴 ∨ℋ 𝐵))) |
13 | 7, 12 | sylbid 232 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ → 𝐴 ⊊ (𝐴 ∨ℋ 𝐵))) |
14 | 13 | 3adant3 1113 | . . . . . . 7 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ → 𝐴 ⊊ (𝐴 ∨ℋ 𝐵))) |
15 | 14 | adantld 483 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐴 ⊊ (𝐴 ∨ℋ 𝐵))) |
16 | id 22 | . . . . . . . 8 ⊢ (𝐴 ∈ Cℋ → 𝐴 ∈ Cℋ ) | |
17 | chub1 29081 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐶)) | |
18 | 17 | 3adant2 1112 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐶)) |
19 | 18 | a1d 25 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) → 𝐴 ⊆ (𝐴 ∨ℋ 𝐶))) |
20 | 19 | ancrd 544 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) → (𝐴 ⊆ (𝐴 ∨ℋ 𝐶) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)))) |
21 | chjcl 28931 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐶) ∈ Cℋ ) | |
22 | 21 | 3adant2 1112 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐶) ∈ Cℋ ) |
23 | chlub 29083 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐶) ∈ Cℋ ) → ((𝐴 ⊆ (𝐴 ∨ℋ 𝐶) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) ↔ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) | |
24 | 22, 23 | syld3an3 1390 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⊆ (𝐴 ∨ℋ 𝐶) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) ↔ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) |
25 | 20, 24 | sylibd 231 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) → (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) |
26 | 16, 8, 1, 25 | syl3an 1141 | . . . . . . 7 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) → (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) |
27 | 26 | adantrd 484 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) |
28 | 15, 27 | jcad 505 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)))) |
29 | 28 | imp 398 | . . . 4 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶))) |
30 | simp1 1117 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) | |
31 | 9 | 3adant3 1113 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) |
32 | 30, 22, 31 | 3jca 1109 | . . . . . . 7 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐶) ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ )) |
33 | 16, 8, 1, 32 | syl3an 1141 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐶) ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ )) |
34 | 14, 26 | anim12d 600 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)))) |
35 | 34 | ancomsd 458 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)))) |
36 | psssstr 3968 | . . . . . . . 8 ⊢ ((𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)) → 𝐴 ⊊ (𝐴 ∨ℋ 𝐶)) | |
37 | 35, 36 | syl6 35 | . . . . . . 7 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐴 ⊊ (𝐴 ∨ℋ 𝐶))) |
38 | chcv2 29930 | . . . . . . . 8 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐶) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐶))) | |
39 | 38 | 3adant2 1112 | . . . . . . 7 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐶) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐶))) |
40 | 37, 39 | sylibd 231 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐶))) |
41 | cvnbtwn2 29861 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐶) ∈ Cℋ ∧ (𝐴 ∨ℋ 𝐵) ∈ Cℋ ) → (𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐶) → ((𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∨ℋ 𝐵) = (𝐴 ∨ℋ 𝐶)))) | |
42 | 33, 40, 41 | sylsyld 61 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ((𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∨ℋ 𝐵) = (𝐴 ∨ℋ 𝐶)))) |
43 | 42 | imp 398 | . . . 4 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → ((𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ∧ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∨ℋ 𝐵) = (𝐴 ∨ℋ 𝐶))) |
44 | 29, 43 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → (𝐴 ∨ℋ 𝐵) = (𝐴 ∨ℋ 𝐶)) |
45 | 6, 44 | sseqtr4d 3893 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ)) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) |
46 | 45 | ex 405 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∩ cin 3823 ⊆ wss 3824 ⊊ wpss 3825 class class class wbr 4926 (class class class)co 6975 Cℋ cch 28501 ∨ℋ chj 28505 0ℋc0h 28507 ⋖ℋ ccv 28536 HAtomscat 28537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cc 9654 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 ax-addf 10413 ax-mulf 10414 ax-hilex 28571 ax-hfvadd 28572 ax-hvcom 28573 ax-hvass 28574 ax-hv0cl 28575 ax-hvaddid 28576 ax-hfvmul 28577 ax-hvmulid 28578 ax-hvmulass 28579 ax-hvdistr1 28580 ax-hvdistr2 28581 ax-hvmul0 28582 ax-hfi 28651 ax-his1 28654 ax-his2 28655 ax-his3 28656 ax-his4 28657 ax-hcompl 28774 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-iin 4792 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-of 7226 df-om 7396 df-1st 7500 df-2nd 7501 df-supp 7633 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-oadd 7908 df-omul 7909 df-er 8088 df-map 8207 df-pm 8208 df-ixp 8259 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-fsupp 8628 df-fi 8669 df-sup 8700 df-inf 8701 df-oi 8768 df-card 9161 df-acn 9164 df-cda 9387 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-uz 12058 df-q 12162 df-rp 12204 df-xneg 12323 df-xadd 12324 df-xmul 12325 df-ioo 12557 df-ico 12559 df-icc 12560 df-fz 12708 df-fzo 12849 df-fl 12976 df-seq 13184 df-exp 13244 df-hash 13505 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-clim 14705 df-rlim 14706 df-sum 14903 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-mulr 16434 df-starv 16435 df-sca 16436 df-vsca 16437 df-ip 16438 df-tset 16439 df-ple 16440 df-ds 16442 df-unif 16443 df-hom 16444 df-cco 16445 df-rest 16551 df-topn 16552 df-0g 16570 df-gsum 16571 df-topgen 16572 df-pt 16573 df-prds 16576 df-xrs 16630 df-qtop 16635 df-imas 16636 df-xps 16638 df-mre 16728 df-mrc 16729 df-acs 16731 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-submnd 17817 df-mulg 18025 df-cntz 18231 df-cmn 18681 df-psmet 20255 df-xmet 20256 df-met 20257 df-bl 20258 df-mopn 20259 df-fbas 20260 df-fg 20261 df-cnfld 20264 df-top 21222 df-topon 21239 df-topsp 21261 df-bases 21274 df-cld 21347 df-ntr 21348 df-cls 21349 df-nei 21426 df-cn 21555 df-cnp 21556 df-lm 21557 df-haus 21643 df-tx 21890 df-hmeo 22083 df-fil 22174 df-fm 22266 df-flim 22267 df-flf 22268 df-xms 22649 df-ms 22650 df-tms 22651 df-cfil 23577 df-cau 23578 df-cmet 23579 df-grpo 28063 df-gid 28064 df-ginv 28065 df-gdiv 28066 df-ablo 28115 df-vc 28129 df-nv 28162 df-va 28165 df-ba 28166 df-sm 28167 df-0v 28168 df-vs 28169 df-nmcv 28170 df-ims 28171 df-dip 28271 df-ssp 28292 df-ph 28383 df-cbn 28434 df-hnorm 28540 df-hba 28541 df-hvsub 28543 df-hlim 28544 df-hcau 28545 df-sh 28779 df-ch 28793 df-oc 28824 df-ch0 28825 df-shs 28882 df-span 28883 df-chj 28884 df-chsup 28885 df-pjh 28969 df-cv 29853 df-at 29912 |
This theorem is referenced by: atomli 29956 atcvatlem 29959 atcvat4i 29971 mdsymlem3 29979 mdsymlem5 29981 |
Copyright terms: Public domain | W3C validator |