| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version | ||
| Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37006 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-1upln0 37004 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
| 3 | 0pss 4413 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
| 5 | ssun1 4144 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 6 | psssstr 4075 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 8 | 0pss 4413 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
| 10 | 1, 9 | eqnetri 2996 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 ∪ cun 3915 ⊆ wss 3917 ⊊ wpss 3918 ∅c0 4299 {csn 4592 × cxp 5639 1oc1o 8430 tag bj-ctag 36969 ⦅bj-c1upl 36992 ⦅bj-c2uple 37005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-bj-tag 36970 df-bj-1upl 36993 df-bj-2upl 37006 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |