| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version | ||
| Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 36995 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-1upln0 36993 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
| 3 | 0pss 4398 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
| 5 | ssun1 4129 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 6 | psssstr 4060 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 8 | 0pss 4398 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
| 10 | 1, 9 | eqnetri 2995 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∪ cun 3901 ⊆ wss 3903 ⊊ wpss 3904 ∅c0 4284 {csn 4577 × cxp 5617 1oc1o 8381 tag bj-ctag 36958 ⦅bj-c1upl 36981 ⦅bj-c2uple 36994 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-bj-tag 36959 df-bj-1upl 36982 df-bj-2upl 36995 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |