Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2upln0 Structured version   Visualization version   GIF version

Theorem bj-2upln0 35140
Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-2upln0 𝐴, 𝐵⦆ ≠ ∅

Proof of Theorem bj-2upln0
StepHypRef Expression
1 df-bj-2upl 35128 . 2 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-1upln0 35126 . . . . 5 𝐴⦆ ≠ ∅
3 0pss 4375 . . . . 5 (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅)
42, 3mpbir 230 . . . 4 ∅ ⊊ ⦅𝐴
5 ssun1 4102 . . . 4 𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
6 psssstr 4037 . . . 4 ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
74, 5, 6mp2an 688 . . 3 ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
8 0pss 4375 . . 3 (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅)
97, 8mpbi 229 . 2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅
101, 9eqnetri 3013 1 𝐴, 𝐵⦆ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2942  cun 3881  wss 3883  wpss 3884  c0 4253  {csn 4558   × cxp 5578  1oc1o 8260  tag bj-ctag 35091  bj-c1upl 35114  bj-c2uple 35127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-bj-tag 35092  df-bj-1upl 35115  df-bj-2upl 35128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator