| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version | ||
| Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-2upl 37055 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 2 | bj-1upln0 37053 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
| 3 | 0pss 4394 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
| 4 | 2, 3 | mpbir 231 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
| 5 | ssun1 4125 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
| 6 | psssstr 4056 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
| 7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
| 8 | 0pss 4394 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
| 10 | 1, 9 | eqnetri 2998 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∪ cun 3895 ⊆ wss 3897 ⊊ wpss 3898 ∅c0 4280 {csn 4573 × cxp 5612 1oc1o 8378 tag bj-ctag 37018 ⦅bj-c1upl 37041 ⦅bj-c2uple 37054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-bj-tag 37019 df-bj-1upl 37042 df-bj-2upl 37055 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |