Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-2upln0 Structured version   Visualization version   GIF version

Theorem bj-2upln0 37011
Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-2upln0 𝐴, 𝐵⦆ ≠ ∅

Proof of Theorem bj-2upln0
StepHypRef Expression
1 df-bj-2upl 36999 . 2 𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
2 bj-1upln0 36997 . . . . 5 𝐴⦆ ≠ ∅
3 0pss 4410 . . . . 5 (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅)
42, 3mpbir 231 . . . 4 ∅ ⊊ ⦅𝐴
5 ssun1 4141 . . . 4 𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
6 psssstr 4072 . . . 4 ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)))
74, 5, 6mp2an 692 . . 3 ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
8 0pss 4410 . . 3 (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅)
97, 8mpbi 230 . 2 (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅
101, 9eqnetri 2995 1 𝐴, 𝐵⦆ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2925  cun 3912  wss 3914  wpss 3915  c0 4296  {csn 4589   × cxp 5636  1oc1o 8427  tag bj-ctag 36962  bj-c1upl 36985  bj-c2uple 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-bj-tag 36963  df-bj-1upl 36986  df-bj-2upl 36999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator