Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version |
Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 34938 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-1upln0 34936 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
3 | 0pss 4359 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
4 | 2, 3 | mpbir 234 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
5 | ssun1 4086 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
6 | psssstr 4021 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
7 | 4, 5, 6 | mp2an 692 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
8 | 0pss 4359 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
9 | 7, 8 | mpbi 233 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
10 | 1, 9 | eqnetri 3011 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2940 ∪ cun 3864 ⊆ wss 3866 ⊊ wpss 3867 ∅c0 4237 {csn 4541 × cxp 5549 1oc1o 8195 tag bj-ctag 34901 ⦅bj-c1upl 34924 ⦅bj-c2uple 34937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 df-rel 5558 df-cnv 5559 df-bj-tag 34902 df-bj-1upl 34925 df-bj-2upl 34938 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |