![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version |
Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 36195 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-1upln0 36193 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
3 | 0pss 4443 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
4 | 2, 3 | mpbir 230 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
5 | ssun1 4171 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
6 | psssstr 4105 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
7 | 4, 5, 6 | mp2an 688 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
8 | 0pss 4443 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
10 | 1, 9 | eqnetri 3009 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 ∪ cun 3945 ⊆ wss 3947 ⊊ wpss 3948 ∅c0 4321 {csn 4627 × cxp 5673 1oc1o 8461 tag bj-ctag 36158 ⦅bj-c1upl 36181 ⦅bj-c2uple 36194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-bj-tag 36159 df-bj-1upl 36182 df-bj-2upl 36195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |