Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upln0 | Structured version Visualization version GIF version |
Description: A couple is nonempty. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
bj-2upln0 | ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 35201 | . 2 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
2 | bj-1upln0 35199 | . . . . 5 ⊢ ⦅𝐴⦆ ≠ ∅ | |
3 | 0pss 4378 | . . . . 5 ⊢ (∅ ⊊ ⦅𝐴⦆ ↔ ⦅𝐴⦆ ≠ ∅) | |
4 | 2, 3 | mpbir 230 | . . . 4 ⊢ ∅ ⊊ ⦅𝐴⦆ |
5 | ssun1 4106 | . . . 4 ⊢ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) | |
6 | psssstr 4041 | . . . 4 ⊢ ((∅ ⊊ ⦅𝐴⦆ ∧ ⦅𝐴⦆ ⊆ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) → ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))) | |
7 | 4, 5, 6 | mp2an 689 | . . 3 ⊢ ∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) |
8 | 0pss 4378 | . . 3 ⊢ (∅ ⊊ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ↔ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ (⦅𝐴⦆ ∪ ({1o} × tag 𝐵)) ≠ ∅ |
10 | 1, 9 | eqnetri 3014 | 1 ⊢ ⦅𝐴, 𝐵⦆ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2943 ∪ cun 3885 ⊆ wss 3887 ⊊ wpss 3888 ∅c0 4256 {csn 4561 × cxp 5587 1oc1o 8290 tag bj-ctag 35164 ⦅bj-c1upl 35187 ⦅bj-c2uple 35200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-bj-tag 35165 df-bj-1upl 35188 df-bj-2upl 35201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |