MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Structured version   Visualization version   GIF version

Theorem suplem1pr 10739
Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem suplem1pr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 10685 . . . . . . . . 9 <P ⊆ (P × P)
21brel 5643 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
32simpld 494 . . . . . . 7 (𝑦<P 𝑥𝑦P)
43ralimi 3086 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
5 dfss3 3905 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
64, 5sylibr 233 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
76rexlimivw 3210 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
87adantl 481 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
9 n0 4277 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
10 ssel 3910 . . . . . . 7 (𝐴P → (𝑧𝐴𝑧P))
11 prn0 10676 . . . . . . . . . 10 (𝑧P𝑧 ≠ ∅)
12 0pss 4375 . . . . . . . . . 10 (∅ ⊊ 𝑧𝑧 ≠ ∅)
1311, 12sylibr 233 . . . . . . . . 9 (𝑧P → ∅ ⊊ 𝑧)
14 elssuni 4868 . . . . . . . . 9 (𝑧𝐴𝑧 𝐴)
15 psssstr 4037 . . . . . . . . 9 ((∅ ⊊ 𝑧𝑧 𝐴) → ∅ ⊊ 𝐴)
1613, 14, 15syl2an 595 . . . . . . . 8 ((𝑧P𝑧𝐴) → ∅ ⊊ 𝐴)
1716expcom 413 . . . . . . 7 (𝑧𝐴 → (𝑧P → ∅ ⊊ 𝐴))
1810, 17sylcom 30 . . . . . 6 (𝐴P → (𝑧𝐴 → ∅ ⊊ 𝐴))
1918exlimdv 1937 . . . . 5 (𝐴P → (∃𝑧 𝑧𝐴 → ∅ ⊊ 𝐴))
209, 19syl5bi 241 . . . 4 (𝐴P → (𝐴 ≠ ∅ → ∅ ⊊ 𝐴))
21 prpssnq 10677 . . . . . . 7 (𝑥P𝑥Q)
2221adantl 481 . . . . . 6 ((𝐴P𝑥P) → 𝑥Q)
23 ltprord 10717 . . . . . . . . . 10 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
24 pssss 4026 . . . . . . . . . 10 (𝑦𝑥𝑦𝑥)
2523, 24syl6bi 252 . . . . . . . . 9 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
262, 25mpcom 38 . . . . . . . 8 (𝑦<P 𝑥𝑦𝑥)
2726ralimi 3086 . . . . . . 7 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦𝑥)
28 unissb 4870 . . . . . . 7 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
2927, 28sylibr 233 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 𝐴𝑥)
30 sspsstr 4036 . . . . . . 7 (( 𝐴𝑥𝑥Q) → 𝐴Q)
3130expcom 413 . . . . . 6 (𝑥Q → ( 𝐴𝑥 𝐴Q))
3222, 29, 31syl2im 40 . . . . 5 ((𝐴P𝑥P) → (∀𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3332rexlimdva 3212 . . . 4 (𝐴P → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3420, 33anim12d 608 . . 3 (𝐴P → ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q)))
358, 34mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q))
36 prcdnq 10680 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → (𝑦 <Q 𝑥𝑦𝑧))
3736ex 412 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → (𝑦 <Q 𝑥𝑦𝑧)))
3837com3r 87 . . . . . . . . . . 11 (𝑦 <Q 𝑥 → (𝑧P → (𝑥𝑧𝑦𝑧)))
3910, 38sylan9 507 . . . . . . . . . 10 ((𝐴P𝑦 <Q 𝑥) → (𝑧𝐴 → (𝑥𝑧𝑦𝑧)))
4039reximdvai 3199 . . . . . . . . 9 ((𝐴P𝑦 <Q 𝑥) → (∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 𝑦𝑧))
41 eluni2 4840 . . . . . . . . 9 (𝑥 𝐴 ↔ ∃𝑧𝐴 𝑥𝑧)
42 eluni2 4840 . . . . . . . . 9 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
4340, 41, 423imtr4g 295 . . . . . . . 8 ((𝐴P𝑦 <Q 𝑥) → (𝑥 𝐴𝑦 𝐴))
4443ex 412 . . . . . . 7 (𝐴P → (𝑦 <Q 𝑥 → (𝑥 𝐴𝑦 𝐴)))
4544com23 86 . . . . . 6 (𝐴P → (𝑥 𝐴 → (𝑦 <Q 𝑥𝑦 𝐴)))
4645alrimdv 1933 . . . . 5 (𝐴P → (𝑥 𝐴 → ∀𝑦(𝑦 <Q 𝑥𝑦 𝐴)))
47 eluni 4839 . . . . . 6 (𝑥 𝐴 ↔ ∃𝑧(𝑥𝑧𝑧𝐴))
48 prnmax 10682 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → ∃𝑦𝑧 𝑥 <Q 𝑦)
4948ex 412 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦))
5010, 49syl6 35 . . . . . . . . . . 11 (𝐴P → (𝑧𝐴 → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5150com23 86 . . . . . . . . . 10 (𝐴P → (𝑥𝑧 → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5251imp 406 . . . . . . . . 9 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦))
53 ssrexv 3984 . . . . . . . . . 10 (𝑧 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5414, 53syl 17 . . . . . . . . 9 (𝑧𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5552, 54sylcom 30 . . . . . . . 8 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5655expimpd 453 . . . . . . 7 (𝐴P → ((𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5756exlimdv 1937 . . . . . 6 (𝐴P → (∃𝑧(𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5847, 57syl5bi 241 . . . . 5 (𝐴P → (𝑥 𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5946, 58jcad 512 . . . 4 (𝐴P → (𝑥 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6059ralrimiv 3106 . . 3 (𝐴P → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
618, 60syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
62 elnp 10674 . 2 ( 𝐴P ↔ ((∅ ⊊ 𝐴 𝐴Q) ∧ ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6335, 61, 62sylanbrc 582 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  wpss 3884  c0 4253   cuni 4836   class class class wbr 5070  Qcnq 10539   <Q cltq 10545  Pcnp 10546  <P cltp 10550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-om 7688  df-ni 10559  df-nq 10599  df-ltnq 10605  df-np 10668  df-ltp 10672
This theorem is referenced by:  supexpr  10741
  Copyright terms: Public domain W3C validator