| Step | Hyp | Ref
| Expression |
| 1 | | ltrelpr 11017 |
. . . . . . . . 9
⊢
<P ⊆ (P ×
P) |
| 2 | 1 | brel 5724 |
. . . . . . . 8
⊢ (𝑦<P
𝑥 → (𝑦 ∈ P ∧
𝑥 ∈
P)) |
| 3 | 2 | simpld 494 |
. . . . . . 7
⊢ (𝑦<P
𝑥 → 𝑦 ∈ P) |
| 4 | 3 | ralimi 3074 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
| 5 | | dfss3 3952 |
. . . . . 6
⊢ (𝐴 ⊆ P ↔
∀𝑦 ∈ 𝐴 𝑦 ∈ P) |
| 6 | 4, 5 | sylibr 234 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 7 | 6 | rexlimivw 3138 |
. . . 4
⊢
(∃𝑥 ∈
P ∀𝑦
∈ 𝐴 𝑦<P 𝑥 → 𝐴 ⊆ P) |
| 8 | 7 | adantl 481 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P
∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → 𝐴 ⊆ P) |
| 9 | | n0 4333 |
. . . . 5
⊢ (𝐴 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
| 10 | | ssel 3957 |
. . . . . . 7
⊢ (𝐴 ⊆ P →
(𝑧 ∈ 𝐴 → 𝑧 ∈ P)) |
| 11 | | prn0 11008 |
. . . . . . . . . 10
⊢ (𝑧 ∈ P →
𝑧 ≠
∅) |
| 12 | | 0pss 4427 |
. . . . . . . . . 10
⊢ (∅
⊊ 𝑧 ↔ 𝑧 ≠ ∅) |
| 13 | 11, 12 | sylibr 234 |
. . . . . . . . 9
⊢ (𝑧 ∈ P →
∅ ⊊ 𝑧) |
| 14 | | elssuni 4918 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → 𝑧 ⊆ ∪ 𝐴) |
| 15 | | psssstr 4089 |
. . . . . . . . 9
⊢ ((∅
⊊ 𝑧 ∧ 𝑧 ⊆ ∪ 𝐴)
→ ∅ ⊊ ∪ 𝐴) |
| 16 | 13, 14, 15 | syl2an 596 |
. . . . . . . 8
⊢ ((𝑧 ∈ P ∧
𝑧 ∈ 𝐴) → ∅ ⊊ ∪ 𝐴) |
| 17 | 16 | expcom 413 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (𝑧 ∈ P → ∅
⊊ ∪ 𝐴)) |
| 18 | 10, 17 | sylcom 30 |
. . . . . 6
⊢ (𝐴 ⊆ P →
(𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴)) |
| 19 | 18 | exlimdv 1933 |
. . . . 5
⊢ (𝐴 ⊆ P →
(∃𝑧 𝑧 ∈ 𝐴 → ∅ ⊊ ∪ 𝐴)) |
| 20 | 9, 19 | biimtrid 242 |
. . . 4
⊢ (𝐴 ⊆ P →
(𝐴 ≠ ∅ →
∅ ⊊ ∪ 𝐴)) |
| 21 | | prpssnq 11009 |
. . . . . . 7
⊢ (𝑥 ∈ P →
𝑥 ⊊
Q) |
| 22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ⊆ P ∧
𝑥 ∈ P)
→ 𝑥 ⊊
Q) |
| 23 | | ltprord 11049 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ P ∧
𝑥 ∈ P)
→ (𝑦<P 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 24 | | pssss 4078 |
. . . . . . . . . 10
⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) |
| 25 | 23, 24 | biimtrdi 253 |
. . . . . . . . 9
⊢ ((𝑦 ∈ P ∧
𝑥 ∈ P)
→ (𝑦<P 𝑥 → 𝑦 ⊆ 𝑥)) |
| 26 | 2, 25 | mpcom 38 |
. . . . . . . 8
⊢ (𝑦<P
𝑥 → 𝑦 ⊆ 𝑥) |
| 27 | 26 | ralimi 3074 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 𝑦<P 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 28 | | unissb 4920 |
. . . . . . 7
⊢ (∪ 𝐴
⊆ 𝑥 ↔
∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) |
| 29 | 27, 28 | sylibr 234 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐴 𝑦<P 𝑥 → ∪ 𝐴
⊆ 𝑥) |
| 30 | | sspsstr 4088 |
. . . . . . 7
⊢ ((∪ 𝐴
⊆ 𝑥 ∧ 𝑥 ⊊ Q)
→ ∪ 𝐴 ⊊ Q) |
| 31 | 30 | expcom 413 |
. . . . . 6
⊢ (𝑥 ⊊ Q →
(∪ 𝐴 ⊆ 𝑥 → ∪ 𝐴 ⊊
Q)) |
| 32 | 22, 29, 31 | syl2im 40 |
. . . . 5
⊢ ((𝐴 ⊆ P ∧
𝑥 ∈ P)
→ (∀𝑦 ∈
𝐴 𝑦<P 𝑥 → ∪ 𝐴
⊊ Q)) |
| 33 | 32 | rexlimdva 3142 |
. . . 4
⊢ (𝐴 ⊆ P →
(∃𝑥 ∈
P ∀𝑦
∈ 𝐴 𝑦<P 𝑥 → ∪ 𝐴
⊊ Q)) |
| 34 | 20, 33 | anim12d 609 |
. . 3
⊢ (𝐴 ⊆ P →
((𝐴 ≠ ∅ ∧
∃𝑥 ∈
P ∀𝑦
∈ 𝐴 𝑦<P 𝑥) → (∅ ⊊ ∪ 𝐴
∧ ∪ 𝐴 ⊊
Q))) |
| 35 | 8, 34 | mpcom 38 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P
∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → (∅ ⊊ ∪ 𝐴
∧ ∪ 𝐴 ⊊ Q)) |
| 36 | | prcdnq 11012 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ P ∧
𝑥 ∈ 𝑧) → (𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧)) |
| 37 | 36 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ P →
(𝑥 ∈ 𝑧 → (𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧))) |
| 38 | 37 | com3r 87 |
. . . . . . . . . . 11
⊢ (𝑦 <Q
𝑥 → (𝑧 ∈ P →
(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 39 | 10, 38 | sylan9 507 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ P ∧
𝑦
<Q 𝑥) → (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 40 | 39 | reximdvai 3152 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ P ∧
𝑦
<Q 𝑥) → (∃𝑧 ∈ 𝐴 𝑥 ∈ 𝑧 → ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧)) |
| 41 | | eluni2 4892 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑧 ∈
𝐴 𝑥 ∈ 𝑧) |
| 42 | | eluni2 4892 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝐴
↔ ∃𝑧 ∈
𝐴 𝑦 ∈ 𝑧) |
| 43 | 40, 41, 42 | 3imtr4g 296 |
. . . . . . . 8
⊢ ((𝐴 ⊆ P ∧
𝑦
<Q 𝑥) → (𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴)) |
| 44 | 43 | ex 412 |
. . . . . . 7
⊢ (𝐴 ⊆ P →
(𝑦
<Q 𝑥 → (𝑥 ∈ ∪ 𝐴 → 𝑦 ∈ ∪ 𝐴))) |
| 45 | 44 | com23 86 |
. . . . . 6
⊢ (𝐴 ⊆ P →
(𝑥 ∈ ∪ 𝐴
→ (𝑦
<Q 𝑥 → 𝑦 ∈ ∪ 𝐴))) |
| 46 | 45 | alrimdv 1929 |
. . . . 5
⊢ (𝐴 ⊆ P →
(𝑥 ∈ ∪ 𝐴
→ ∀𝑦(𝑦 <Q
𝑥 → 𝑦 ∈ ∪ 𝐴))) |
| 47 | | eluni 4891 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴)) |
| 48 | | prnmax 11014 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ P ∧
𝑥 ∈ 𝑧) → ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦) |
| 49 | 48 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ P →
(𝑥 ∈ 𝑧 → ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) |
| 50 | 10, 49 | syl6 35 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ P →
(𝑧 ∈ 𝐴 → (𝑥 ∈ 𝑧 → ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))) |
| 51 | 50 | com23 86 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ P →
(𝑥 ∈ 𝑧 → (𝑧 ∈ 𝐴 → ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦))) |
| 52 | 51 | imp 406 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ P ∧
𝑥 ∈ 𝑧) → (𝑧 ∈ 𝐴 → ∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦)) |
| 53 | | ssrexv 4033 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ ∪ 𝐴
→ (∃𝑦 ∈
𝑧 𝑥 <Q 𝑦 → ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 54 | 14, 53 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐴 → (∃𝑦 ∈ 𝑧 𝑥 <Q 𝑦 → ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 55 | 52, 54 | sylcom 30 |
. . . . . . . 8
⊢ ((𝐴 ⊆ P ∧
𝑥 ∈ 𝑧) → (𝑧 ∈ 𝐴 → ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 56 | 55 | expimpd 453 |
. . . . . . 7
⊢ (𝐴 ⊆ P →
((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 57 | 56 | exlimdv 1933 |
. . . . . 6
⊢ (𝐴 ⊆ P →
(∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 58 | 47, 57 | biimtrid 242 |
. . . . 5
⊢ (𝐴 ⊆ P →
(𝑥 ∈ ∪ 𝐴
→ ∃𝑦 ∈
∪ 𝐴𝑥 <Q 𝑦)) |
| 59 | 46, 58 | jcad 512 |
. . . 4
⊢ (𝐴 ⊆ P →
(𝑥 ∈ ∪ 𝐴
→ (∀𝑦(𝑦 <Q
𝑥 → 𝑦 ∈ ∪ 𝐴) ∧ ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦))) |
| 60 | 59 | ralrimiv 3132 |
. . 3
⊢ (𝐴 ⊆ P →
∀𝑥 ∈ ∪ 𝐴(∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴) ∧ ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 61 | 8, 60 | syl 17 |
. 2
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P
∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∀𝑥 ∈ ∪ 𝐴(∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴) ∧ ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦)) |
| 62 | | elnp 11006 |
. 2
⊢ (∪ 𝐴
∈ P ↔ ((∅ ⊊ ∪
𝐴 ∧ ∪ 𝐴
⊊ Q) ∧ ∀𝑥 ∈ ∪ 𝐴(∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ ∪ 𝐴) ∧ ∃𝑦 ∈ ∪ 𝐴𝑥 <Q 𝑦))) |
| 63 | 35, 61, 62 | sylanbrc 583 |
1
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ P
∀𝑦 ∈ 𝐴 𝑦<P 𝑥) → ∪ 𝐴
∈ P) |