MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Structured version   Visualization version   GIF version

Theorem suplem1pr 10463
Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem suplem1pr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 10409 . . . . . . . . 9 <P ⊆ (P × P)
21brel 5581 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
32simpld 498 . . . . . . 7 (𝑦<P 𝑥𝑦P)
43ralimi 3128 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
5 dfss3 3903 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
64, 5sylibr 237 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
76rexlimivw 3241 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
87adantl 485 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
9 n0 4260 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
10 ssel 3908 . . . . . . 7 (𝐴P → (𝑧𝐴𝑧P))
11 prn0 10400 . . . . . . . . . 10 (𝑧P𝑧 ≠ ∅)
12 0pss 4352 . . . . . . . . . 10 (∅ ⊊ 𝑧𝑧 ≠ ∅)
1311, 12sylibr 237 . . . . . . . . 9 (𝑧P → ∅ ⊊ 𝑧)
14 elssuni 4830 . . . . . . . . 9 (𝑧𝐴𝑧 𝐴)
15 psssstr 4034 . . . . . . . . 9 ((∅ ⊊ 𝑧𝑧 𝐴) → ∅ ⊊ 𝐴)
1613, 14, 15syl2an 598 . . . . . . . 8 ((𝑧P𝑧𝐴) → ∅ ⊊ 𝐴)
1716expcom 417 . . . . . . 7 (𝑧𝐴 → (𝑧P → ∅ ⊊ 𝐴))
1810, 17sylcom 30 . . . . . 6 (𝐴P → (𝑧𝐴 → ∅ ⊊ 𝐴))
1918exlimdv 1934 . . . . 5 (𝐴P → (∃𝑧 𝑧𝐴 → ∅ ⊊ 𝐴))
209, 19syl5bi 245 . . . 4 (𝐴P → (𝐴 ≠ ∅ → ∅ ⊊ 𝐴))
21 prpssnq 10401 . . . . . . 7 (𝑥P𝑥Q)
2221adantl 485 . . . . . 6 ((𝐴P𝑥P) → 𝑥Q)
23 ltprord 10441 . . . . . . . . . 10 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
24 pssss 4023 . . . . . . . . . 10 (𝑦𝑥𝑦𝑥)
2523, 24syl6bi 256 . . . . . . . . 9 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
262, 25mpcom 38 . . . . . . . 8 (𝑦<P 𝑥𝑦𝑥)
2726ralimi 3128 . . . . . . 7 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦𝑥)
28 unissb 4832 . . . . . . 7 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
2927, 28sylibr 237 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 𝐴𝑥)
30 sspsstr 4033 . . . . . . 7 (( 𝐴𝑥𝑥Q) → 𝐴Q)
3130expcom 417 . . . . . 6 (𝑥Q → ( 𝐴𝑥 𝐴Q))
3222, 29, 31syl2im 40 . . . . 5 ((𝐴P𝑥P) → (∀𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3332rexlimdva 3243 . . . 4 (𝐴P → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3420, 33anim12d 611 . . 3 (𝐴P → ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q)))
358, 34mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q))
36 prcdnq 10404 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → (𝑦 <Q 𝑥𝑦𝑧))
3736ex 416 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → (𝑦 <Q 𝑥𝑦𝑧)))
3837com3r 87 . . . . . . . . . . 11 (𝑦 <Q 𝑥 → (𝑧P → (𝑥𝑧𝑦𝑧)))
3910, 38sylan9 511 . . . . . . . . . 10 ((𝐴P𝑦 <Q 𝑥) → (𝑧𝐴 → (𝑥𝑧𝑦𝑧)))
4039reximdvai 3231 . . . . . . . . 9 ((𝐴P𝑦 <Q 𝑥) → (∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 𝑦𝑧))
41 eluni2 4804 . . . . . . . . 9 (𝑥 𝐴 ↔ ∃𝑧𝐴 𝑥𝑧)
42 eluni2 4804 . . . . . . . . 9 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
4340, 41, 423imtr4g 299 . . . . . . . 8 ((𝐴P𝑦 <Q 𝑥) → (𝑥 𝐴𝑦 𝐴))
4443ex 416 . . . . . . 7 (𝐴P → (𝑦 <Q 𝑥 → (𝑥 𝐴𝑦 𝐴)))
4544com23 86 . . . . . 6 (𝐴P → (𝑥 𝐴 → (𝑦 <Q 𝑥𝑦 𝐴)))
4645alrimdv 1930 . . . . 5 (𝐴P → (𝑥 𝐴 → ∀𝑦(𝑦 <Q 𝑥𝑦 𝐴)))
47 eluni 4803 . . . . . 6 (𝑥 𝐴 ↔ ∃𝑧(𝑥𝑧𝑧𝐴))
48 prnmax 10406 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → ∃𝑦𝑧 𝑥 <Q 𝑦)
4948ex 416 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦))
5010, 49syl6 35 . . . . . . . . . . 11 (𝐴P → (𝑧𝐴 → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5150com23 86 . . . . . . . . . 10 (𝐴P → (𝑥𝑧 → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5251imp 410 . . . . . . . . 9 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦))
53 ssrexv 3982 . . . . . . . . . 10 (𝑧 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5414, 53syl 17 . . . . . . . . 9 (𝑧𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5552, 54sylcom 30 . . . . . . . 8 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5655expimpd 457 . . . . . . 7 (𝐴P → ((𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5756exlimdv 1934 . . . . . 6 (𝐴P → (∃𝑧(𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5847, 57syl5bi 245 . . . . 5 (𝐴P → (𝑥 𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5946, 58jcad 516 . . . 4 (𝐴P → (𝑥 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6059ralrimiv 3148 . . 3 (𝐴P → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
618, 60syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
62 elnp 10398 . 2 ( 𝐴P ↔ ((∅ ⊊ 𝐴 𝐴Q) ∧ ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6335, 61, 62sylanbrc 586 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  wpss 3882  c0 4243   cuni 4800   class class class wbr 5030  Qcnq 10263   <Q cltq 10269  Pcnp 10270  <P cltp 10274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-om 7561  df-ni 10283  df-nq 10323  df-ltnq 10329  df-np 10392  df-ltp 10396
This theorem is referenced by:  supexpr  10465
  Copyright terms: Public domain W3C validator