MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suplem1pr Structured version   Visualization version   GIF version

Theorem suplem1pr 11077
Description: The union of a nonempty, bounded set of positive reals is a positive real. Part of Proposition 9-3.3 of [Gleason] p. 122. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
suplem1pr ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem suplem1pr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 11023 . . . . . . . . 9 <P ⊆ (P × P)
21brel 5743 . . . . . . . 8 (𝑦<P 𝑥 → (𝑦P𝑥P))
32simpld 493 . . . . . . 7 (𝑦<P 𝑥𝑦P)
43ralimi 3072 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦P)
5 dfss3 3965 . . . . . 6 (𝐴P ↔ ∀𝑦𝐴 𝑦P)
64, 5sylibr 233 . . . . 5 (∀𝑦𝐴 𝑦<P 𝑥𝐴P)
76rexlimivw 3140 . . . 4 (∃𝑥P𝑦𝐴 𝑦<P 𝑥𝐴P)
87adantl 480 . . 3 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
9 n0 4346 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
10 ssel 3970 . . . . . . 7 (𝐴P → (𝑧𝐴𝑧P))
11 prn0 11014 . . . . . . . . . 10 (𝑧P𝑧 ≠ ∅)
12 0pss 4446 . . . . . . . . . 10 (∅ ⊊ 𝑧𝑧 ≠ ∅)
1311, 12sylibr 233 . . . . . . . . 9 (𝑧P → ∅ ⊊ 𝑧)
14 elssuni 4941 . . . . . . . . 9 (𝑧𝐴𝑧 𝐴)
15 psssstr 4102 . . . . . . . . 9 ((∅ ⊊ 𝑧𝑧 𝐴) → ∅ ⊊ 𝐴)
1613, 14, 15syl2an 594 . . . . . . . 8 ((𝑧P𝑧𝐴) → ∅ ⊊ 𝐴)
1716expcom 412 . . . . . . 7 (𝑧𝐴 → (𝑧P → ∅ ⊊ 𝐴))
1810, 17sylcom 30 . . . . . 6 (𝐴P → (𝑧𝐴 → ∅ ⊊ 𝐴))
1918exlimdv 1928 . . . . 5 (𝐴P → (∃𝑧 𝑧𝐴 → ∅ ⊊ 𝐴))
209, 19biimtrid 241 . . . 4 (𝐴P → (𝐴 ≠ ∅ → ∅ ⊊ 𝐴))
21 prpssnq 11015 . . . . . . 7 (𝑥P𝑥Q)
2221adantl 480 . . . . . 6 ((𝐴P𝑥P) → 𝑥Q)
23 ltprord 11055 . . . . . . . . . 10 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
24 pssss 4091 . . . . . . . . . 10 (𝑦𝑥𝑦𝑥)
2523, 24biimtrdi 252 . . . . . . . . 9 ((𝑦P𝑥P) → (𝑦<P 𝑥𝑦𝑥))
262, 25mpcom 38 . . . . . . . 8 (𝑦<P 𝑥𝑦𝑥)
2726ralimi 3072 . . . . . . 7 (∀𝑦𝐴 𝑦<P 𝑥 → ∀𝑦𝐴 𝑦𝑥)
28 unissb 4943 . . . . . . 7 ( 𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
2927, 28sylibr 233 . . . . . 6 (∀𝑦𝐴 𝑦<P 𝑥 𝐴𝑥)
30 sspsstr 4101 . . . . . . 7 (( 𝐴𝑥𝑥Q) → 𝐴Q)
3130expcom 412 . . . . . 6 (𝑥Q → ( 𝐴𝑥 𝐴Q))
3222, 29, 31syl2im 40 . . . . 5 ((𝐴P𝑥P) → (∀𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3332rexlimdva 3144 . . . 4 (𝐴P → (∃𝑥P𝑦𝐴 𝑦<P 𝑥 𝐴Q))
3420, 33anim12d 607 . . 3 (𝐴P → ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q)))
358, 34mpcom 38 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → (∅ ⊊ 𝐴 𝐴Q))
36 prcdnq 11018 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → (𝑦 <Q 𝑥𝑦𝑧))
3736ex 411 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → (𝑦 <Q 𝑥𝑦𝑧)))
3837com3r 87 . . . . . . . . . . 11 (𝑦 <Q 𝑥 → (𝑧P → (𝑥𝑧𝑦𝑧)))
3910, 38sylan9 506 . . . . . . . . . 10 ((𝐴P𝑦 <Q 𝑥) → (𝑧𝐴 → (𝑥𝑧𝑦𝑧)))
4039reximdvai 3154 . . . . . . . . 9 ((𝐴P𝑦 <Q 𝑥) → (∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 𝑦𝑧))
41 eluni2 4913 . . . . . . . . 9 (𝑥 𝐴 ↔ ∃𝑧𝐴 𝑥𝑧)
42 eluni2 4913 . . . . . . . . 9 (𝑦 𝐴 ↔ ∃𝑧𝐴 𝑦𝑧)
4340, 41, 423imtr4g 295 . . . . . . . 8 ((𝐴P𝑦 <Q 𝑥) → (𝑥 𝐴𝑦 𝐴))
4443ex 411 . . . . . . 7 (𝐴P → (𝑦 <Q 𝑥 → (𝑥 𝐴𝑦 𝐴)))
4544com23 86 . . . . . 6 (𝐴P → (𝑥 𝐴 → (𝑦 <Q 𝑥𝑦 𝐴)))
4645alrimdv 1924 . . . . 5 (𝐴P → (𝑥 𝐴 → ∀𝑦(𝑦 <Q 𝑥𝑦 𝐴)))
47 eluni 4912 . . . . . 6 (𝑥 𝐴 ↔ ∃𝑧(𝑥𝑧𝑧𝐴))
48 prnmax 11020 . . . . . . . . . . . . 13 ((𝑧P𝑥𝑧) → ∃𝑦𝑧 𝑥 <Q 𝑦)
4948ex 411 . . . . . . . . . . . 12 (𝑧P → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦))
5010, 49syl6 35 . . . . . . . . . . 11 (𝐴P → (𝑧𝐴 → (𝑥𝑧 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5150com23 86 . . . . . . . . . 10 (𝐴P → (𝑥𝑧 → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦)))
5251imp 405 . . . . . . . . 9 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦𝑧 𝑥 <Q 𝑦))
53 ssrexv 4046 . . . . . . . . . 10 (𝑧 𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5414, 53syl 17 . . . . . . . . 9 (𝑧𝐴 → (∃𝑦𝑧 𝑥 <Q 𝑦 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5552, 54sylcom 30 . . . . . . . 8 ((𝐴P𝑥𝑧) → (𝑧𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5655expimpd 452 . . . . . . 7 (𝐴P → ((𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5756exlimdv 1928 . . . . . 6 (𝐴P → (∃𝑧(𝑥𝑧𝑧𝐴) → ∃𝑦 𝐴𝑥 <Q 𝑦))
5847, 57biimtrid 241 . . . . 5 (𝐴P → (𝑥 𝐴 → ∃𝑦 𝐴𝑥 <Q 𝑦))
5946, 58jcad 511 . . . 4 (𝐴P → (𝑥 𝐴 → (∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6059ralrimiv 3134 . . 3 (𝐴P → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
618, 60syl 17 . 2 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦))
62 elnp 11012 . 2 ( 𝐴P ↔ ((∅ ⊊ 𝐴 𝐴Q) ∧ ∀𝑥 𝐴(∀𝑦(𝑦 <Q 𝑥𝑦 𝐴) ∧ ∃𝑦 𝐴𝑥 <Q 𝑦)))
6335, 61, 62sylanbrc 581 1 ((𝐴 ≠ ∅ ∧ ∃𝑥P𝑦𝐴 𝑦<P 𝑥) → 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1531  wex 1773  wcel 2098  wne 2929  wral 3050  wrex 3059  wss 3944  wpss 3945  c0 4322   cuni 4909   class class class wbr 5149  Qcnq 10877   <Q cltq 10883  Pcnp 10884  <P cltp 10888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-om 7872  df-ni 10897  df-nq 10937  df-ltnq 10943  df-np 11006  df-ltp 11010
This theorem is referenced by:  supexpr  11079
  Copyright terms: Public domain W3C validator