![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptfinfin | Structured version Visualization version GIF version |
Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 |
Ref | Expression |
---|---|
ptfinfin | ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptfinfin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
2 | 1 | isptfin 23019 | . . . 4 ⊢ (𝐴 ∈ PtFin → (𝐴 ∈ PtFin ↔ ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin)) |
3 | 2 | ibi 266 | . . 3 ⊢ (𝐴 ∈ PtFin → ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin) |
4 | eleq1 2821 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) | |
5 | 4 | rabbidv 3440 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} = {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
6 | 5 | eleq1d 2818 | . . . 4 ⊢ (𝑝 = 𝑃 → ({𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
7 | 6 | rspccv 3609 | . . 3 ⊢ (∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ PtFin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
9 | 8 | imp 407 | 1 ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 ∪ cuni 4908 Fincfn 8938 PtFincptfin 23006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-ptfin 23009 |
This theorem is referenced by: locfindis 23033 comppfsc 23035 |
Copyright terms: Public domain | W3C validator |