Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptfinfin | Structured version Visualization version GIF version |
Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 |
Ref | Expression |
---|---|
ptfinfin | ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptfinfin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
2 | 1 | isptfin 22575 | . . . 4 ⊢ (𝐴 ∈ PtFin → (𝐴 ∈ PtFin ↔ ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin)) |
3 | 2 | ibi 266 | . . 3 ⊢ (𝐴 ∈ PtFin → ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin) |
4 | eleq1 2826 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) | |
5 | 4 | rabbidv 3404 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} = {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
6 | 5 | eleq1d 2823 | . . . 4 ⊢ (𝑝 = 𝑃 → ({𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
7 | 6 | rspccv 3549 | . . 3 ⊢ (∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
8 | 3, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ PtFin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
9 | 8 | imp 406 | 1 ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∪ cuni 4836 Fincfn 8691 PtFincptfin 22562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-ptfin 22565 |
This theorem is referenced by: locfindis 22589 comppfsc 22591 |
Copyright terms: Public domain | W3C validator |