| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptfinfin | Structured version Visualization version GIF version | ||
| Description: A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| ptfinfin.1 | ⊢ 𝑋 = ∪ 𝐴 |
| Ref | Expression |
|---|---|
| ptfinfin | ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptfinfin.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | 1 | isptfin 23431 | . . . 4 ⊢ (𝐴 ∈ PtFin → (𝐴 ∈ PtFin ↔ ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin)) |
| 3 | 2 | ibi 267 | . . 3 ⊢ (𝐴 ∈ PtFin → ∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin) |
| 4 | eleq1 2819 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥)) | |
| 5 | 4 | rabbidv 3402 | . . . . 5 ⊢ (𝑝 = 𝑃 → {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} = {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥}) |
| 6 | 5 | eleq1d 2816 | . . . 4 ⊢ (𝑝 = 𝑃 → ({𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin ↔ {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
| 7 | 6 | rspccv 3569 | . . 3 ⊢ (∀𝑝 ∈ 𝑋 {𝑥 ∈ 𝐴 ∣ 𝑝 ∈ 𝑥} ∈ Fin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ PtFin → (𝑃 ∈ 𝑋 → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∪ cuni 4856 Fincfn 8869 PtFincptfin 23418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-ss 3914 df-uni 4857 df-ptfin 23421 |
| This theorem is referenced by: locfindis 23445 comppfsc 23447 |
| Copyright terms: Public domain | W3C validator |