MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfindis Structured version   Visualization version   GIF version

Theorem locfindis 22681
Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfindis.1 𝑌 = 𝐶
Assertion
Ref Expression
locfindis (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))

Proof of Theorem locfindis
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfinpfin 22675 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝐶 ∈ PtFin)
2 unipw 5366 . . . . 5 𝒫 𝑋 = 𝑋
32eqcomi 2747 . . . 4 𝑋 = 𝒫 𝑋
4 locfindis.1 . . . 4 𝑌 = 𝐶
53, 4locfinbas 22673 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝑋 = 𝑌)
61, 5jca 512 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) → (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
7 simpr 485 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
8 uniexg 7593 . . . . . . 7 (𝐶 ∈ PtFin → 𝐶 ∈ V)
94, 8eqeltrid 2843 . . . . . 6 (𝐶 ∈ PtFin → 𝑌 ∈ V)
109adantr 481 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑌 ∈ V)
117, 10eqeltrd 2839 . . . 4 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 ∈ V)
12 distop 22145 . . . 4 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
1311, 12syl 17 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝒫 𝑋 ∈ Top)
14 snelpwi 5360 . . . . . 6 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
1514adantl 482 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
16 snidg 4595 . . . . . 6 (𝑥𝑋𝑥 ∈ {𝑥})
1716adantl 482 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
18 simpll 764 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐶 ∈ PtFin)
197eleq2d 2824 . . . . . . 7 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → (𝑥𝑋𝑥𝑌))
2019biimpa 477 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑌)
214ptfinfin 22670 . . . . . 6 ((𝐶 ∈ PtFin ∧ 𝑥𝑌) → {𝑠𝐶𝑥𝑠} ∈ Fin)
2218, 20, 21syl2anc 584 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐶𝑥𝑠} ∈ Fin)
23 eleq2 2827 . . . . . . 7 (𝑦 = {𝑥} → (𝑥𝑦𝑥 ∈ {𝑥}))
24 ineq2 4140 . . . . . . . . . . 11 (𝑦 = {𝑥} → (𝑠𝑦) = (𝑠 ∩ {𝑥}))
2524neeq1d 3003 . . . . . . . . . 10 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ (𝑠 ∩ {𝑥}) ≠ ∅))
26 disjsn 4647 . . . . . . . . . . 11 ((𝑠 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑠)
2726necon2abii 2994 . . . . . . . . . 10 (𝑥𝑠 ↔ (𝑠 ∩ {𝑥}) ≠ ∅)
2825, 27bitr4di 289 . . . . . . . . 9 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ 𝑥𝑠))
2928rabbidv 3414 . . . . . . . 8 (𝑦 = {𝑥} → {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} = {𝑠𝐶𝑥𝑠})
3029eleq1d 2823 . . . . . . 7 (𝑦 = {𝑥} → ({𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin ↔ {𝑠𝐶𝑥𝑠} ∈ Fin))
3123, 30anbi12d 631 . . . . . 6 (𝑦 = {𝑥} → ((𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)))
3231rspcev 3561 . . . . 5 (({𝑥} ∈ 𝒫 𝑋 ∧ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3315, 17, 22, 32syl12anc 834 . . . 4 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3433ralrimiva 3103 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
353, 4islocfin 22668 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin)))
3613, 7, 34, 35syl3anbrc 1342 . 2 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝒫 𝑋))
376, 36impbii 208 1 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839  cfv 6433  Fincfn 8733  Topctop 22042  PtFincptfin 22654  LocFinclocfin 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-top 22043  df-ptfin 22657  df-locfin 22658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator