MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfindis Structured version   Visualization version   GIF version

Theorem locfindis 22140
Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfindis.1 𝑌 = 𝐶
Assertion
Ref Expression
locfindis (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))

Proof of Theorem locfindis
Dummy variables 𝑥 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfinpfin 22134 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝐶 ∈ PtFin)
2 unipw 5345 . . . . 5 𝒫 𝑋 = 𝑋
32eqcomi 2832 . . . 4 𝑋 = 𝒫 𝑋
4 locfindis.1 . . . 4 𝑌 = 𝐶
53, 4locfinbas 22132 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) → 𝑋 = 𝑌)
61, 5jca 514 . 2 (𝐶 ∈ (LocFin‘𝒫 𝑋) → (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
7 simpr 487 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
8 uniexg 7468 . . . . . . 7 (𝐶 ∈ PtFin → 𝐶 ∈ V)
94, 8eqeltrid 2919 . . . . . 6 (𝐶 ∈ PtFin → 𝑌 ∈ V)
109adantr 483 . . . . 5 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑌 ∈ V)
117, 10eqeltrd 2915 . . . 4 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝑋 ∈ V)
12 distop 21605 . . . 4 (𝑋 ∈ V → 𝒫 𝑋 ∈ Top)
1311, 12syl 17 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝒫 𝑋 ∈ Top)
14 snelpwi 5339 . . . . . 6 (𝑥𝑋 → {𝑥} ∈ 𝒫 𝑋)
1514adantl 484 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑥} ∈ 𝒫 𝑋)
16 snidg 4601 . . . . . 6 (𝑥𝑋𝑥 ∈ {𝑥})
1716adantl 484 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥 ∈ {𝑥})
18 simpll 765 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐶 ∈ PtFin)
197eleq2d 2900 . . . . . . 7 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → (𝑥𝑋𝑥𝑌))
2019biimpa 479 . . . . . 6 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑌)
214ptfinfin 22129 . . . . . 6 ((𝐶 ∈ PtFin ∧ 𝑥𝑌) → {𝑠𝐶𝑥𝑠} ∈ Fin)
2218, 20, 21syl2anc 586 . . . . 5 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐶𝑥𝑠} ∈ Fin)
23 eleq2 2903 . . . . . . 7 (𝑦 = {𝑥} → (𝑥𝑦𝑥 ∈ {𝑥}))
24 ineq2 4185 . . . . . . . . . . 11 (𝑦 = {𝑥} → (𝑠𝑦) = (𝑠 ∩ {𝑥}))
2524neeq1d 3077 . . . . . . . . . 10 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ (𝑠 ∩ {𝑥}) ≠ ∅))
26 disjsn 4649 . . . . . . . . . . 11 ((𝑠 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥𝑠)
2726necon2abii 3068 . . . . . . . . . 10 (𝑥𝑠 ↔ (𝑠 ∩ {𝑥}) ≠ ∅)
2825, 27syl6bbr 291 . . . . . . . . 9 (𝑦 = {𝑥} → ((𝑠𝑦) ≠ ∅ ↔ 𝑥𝑠))
2928rabbidv 3482 . . . . . . . 8 (𝑦 = {𝑥} → {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} = {𝑠𝐶𝑥𝑠})
3029eleq1d 2899 . . . . . . 7 (𝑦 = {𝑥} → ({𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin ↔ {𝑠𝐶𝑥𝑠} ∈ Fin))
3123, 30anbi12d 632 . . . . . 6 (𝑦 = {𝑥} → ((𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)))
3231rspcev 3625 . . . . 5 (({𝑥} ∈ 𝒫 𝑋 ∧ (𝑥 ∈ {𝑥} ∧ {𝑠𝐶𝑥𝑠} ∈ Fin)) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3315, 17, 22, 32syl12anc 834 . . . 4 (((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
3433ralrimiva 3184 . . 3 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin))
353, 4islocfin 22127 . . 3 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑦 ∈ 𝒫 𝑋(𝑥𝑦 ∧ {𝑠𝐶 ∣ (𝑠𝑦) ≠ ∅} ∈ Fin)))
3613, 7, 34, 35syl3anbrc 1339 . 2 ((𝐶 ∈ PtFin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝒫 𝑋))
376, 36impbii 211 1 (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cin 3937  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840  cfv 6357  Fincfn 8511  Topctop 21503  PtFincptfin 22113  LocFinclocfin 22114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-er 8291  df-en 8512  df-fin 8515  df-top 21504  df-ptfin 22116  df-locfin 22117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator