MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfindis Structured version   Visualization version   GIF version

Theorem locfindis 23389
Description: The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfindis.1 π‘Œ = βˆͺ 𝐢
Assertion
Ref Expression
locfindis (𝐢 ∈ (LocFinβ€˜π’« 𝑋) ↔ (𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ))

Proof of Theorem locfindis
Dummy variables π‘₯ 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfinpfin 23383 . . 3 (𝐢 ∈ (LocFinβ€˜π’« 𝑋) β†’ 𝐢 ∈ PtFin)
2 unipw 5443 . . . . 5 βˆͺ 𝒫 𝑋 = 𝑋
32eqcomi 2735 . . . 4 𝑋 = βˆͺ 𝒫 𝑋
4 locfindis.1 . . . 4 π‘Œ = βˆͺ 𝐢
53, 4locfinbas 23381 . . 3 (𝐢 ∈ (LocFinβ€˜π’« 𝑋) β†’ 𝑋 = π‘Œ)
61, 5jca 511 . 2 (𝐢 ∈ (LocFinβ€˜π’« 𝑋) β†’ (𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ))
7 simpr 484 . . . . 5 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ 𝑋 = π‘Œ)
8 uniexg 7727 . . . . . . 7 (𝐢 ∈ PtFin β†’ βˆͺ 𝐢 ∈ V)
94, 8eqeltrid 2831 . . . . . 6 (𝐢 ∈ PtFin β†’ π‘Œ ∈ V)
109adantr 480 . . . . 5 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ π‘Œ ∈ V)
117, 10eqeltrd 2827 . . . 4 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ 𝑋 ∈ V)
12 distop 22853 . . . 4 (𝑋 ∈ V β†’ 𝒫 𝑋 ∈ Top)
1311, 12syl 17 . . 3 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ 𝒫 𝑋 ∈ Top)
14 snelpwi 5436 . . . . . 6 (π‘₯ ∈ 𝑋 β†’ {π‘₯} ∈ 𝒫 𝑋)
1514adantl 481 . . . . 5 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ {π‘₯} ∈ 𝒫 𝑋)
16 snidg 4657 . . . . . 6 (π‘₯ ∈ 𝑋 β†’ π‘₯ ∈ {π‘₯})
1716adantl 481 . . . . 5 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ {π‘₯})
18 simpll 764 . . . . . 6 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ 𝐢 ∈ PtFin)
197eleq2d 2813 . . . . . . 7 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ (π‘₯ ∈ 𝑋 ↔ π‘₯ ∈ π‘Œ))
2019biimpa 476 . . . . . 6 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ π‘Œ)
214ptfinfin 23378 . . . . . 6 ((𝐢 ∈ PtFin ∧ π‘₯ ∈ π‘Œ) β†’ {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠} ∈ Fin)
2218, 20, 21syl2anc 583 . . . . 5 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠} ∈ Fin)
23 eleq2 2816 . . . . . . 7 (𝑦 = {π‘₯} β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ {π‘₯}))
24 ineq2 4201 . . . . . . . . . . 11 (𝑦 = {π‘₯} β†’ (𝑠 ∩ 𝑦) = (𝑠 ∩ {π‘₯}))
2524neeq1d 2994 . . . . . . . . . 10 (𝑦 = {π‘₯} β†’ ((𝑠 ∩ 𝑦) β‰  βˆ… ↔ (𝑠 ∩ {π‘₯}) β‰  βˆ…))
26 disjsn 4710 . . . . . . . . . . 11 ((𝑠 ∩ {π‘₯}) = βˆ… ↔ Β¬ π‘₯ ∈ 𝑠)
2726necon2abii 2985 . . . . . . . . . 10 (π‘₯ ∈ 𝑠 ↔ (𝑠 ∩ {π‘₯}) β‰  βˆ…)
2825, 27bitr4di 289 . . . . . . . . 9 (𝑦 = {π‘₯} β†’ ((𝑠 ∩ 𝑦) β‰  βˆ… ↔ π‘₯ ∈ 𝑠))
2928rabbidv 3434 . . . . . . . 8 (𝑦 = {π‘₯} β†’ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} = {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠})
3029eleq1d 2812 . . . . . . 7 (𝑦 = {π‘₯} β†’ ({𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin ↔ {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠} ∈ Fin))
3123, 30anbi12d 630 . . . . . 6 (𝑦 = {π‘₯} β†’ ((π‘₯ ∈ 𝑦 ∧ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin) ↔ (π‘₯ ∈ {π‘₯} ∧ {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠} ∈ Fin)))
3231rspcev 3606 . . . . 5 (({π‘₯} ∈ 𝒫 𝑋 ∧ (π‘₯ ∈ {π‘₯} ∧ {𝑠 ∈ 𝐢 ∣ π‘₯ ∈ 𝑠} ∈ Fin)) β†’ βˆƒπ‘¦ ∈ 𝒫 𝑋(π‘₯ ∈ 𝑦 ∧ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin))
3315, 17, 22, 32syl12anc 834 . . . 4 (((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ βˆƒπ‘¦ ∈ 𝒫 𝑋(π‘₯ ∈ 𝑦 ∧ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin))
3433ralrimiva 3140 . . 3 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘¦ ∈ 𝒫 𝑋(π‘₯ ∈ 𝑦 ∧ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin))
353, 4islocfin 23376 . . 3 (𝐢 ∈ (LocFinβ€˜π’« 𝑋) ↔ (𝒫 𝑋 ∈ Top ∧ 𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘¦ ∈ 𝒫 𝑋(π‘₯ ∈ 𝑦 ∧ {𝑠 ∈ 𝐢 ∣ (𝑠 ∩ 𝑦) β‰  βˆ…} ∈ Fin)))
3613, 7, 34, 35syl3anbrc 1340 . 2 ((𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ) β†’ 𝐢 ∈ (LocFinβ€˜π’« 𝑋))
376, 36impbii 208 1 (𝐢 ∈ (LocFinβ€˜π’« 𝑋) ↔ (𝐢 ∈ PtFin ∧ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064  {crab 3426  Vcvv 3468   ∩ cin 3942  βˆ…c0 4317  π’« cpw 4597  {csn 4623  βˆͺ cuni 4902  β€˜cfv 6537  Fincfn 8941  Topctop 22750  PtFincptfin 23362  LocFinclocfin 23363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-en 8942  df-fin 8945  df-top 22751  df-ptfin 23365  df-locfin 23366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator