![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finptfin | Structured version Visualization version GIF version |
Description: A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
finptfin | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabfi 8536 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin) | |
2 | 1 | ralrimivw 3127 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ ∪ 𝐴{𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin) |
3 | eqid 2772 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
4 | 3 | isptfin 21840 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ ∪ 𝐴{𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) |
5 | 2, 4 | mpbird 249 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ∀wral 3082 {crab 3086 ∪ cuni 4708 Fincfn 8304 PtFincptfin 21827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-om 7395 df-er 8087 df-en 8305 df-fin 8308 df-ptfin 21830 |
This theorem is referenced by: comppfsc 21856 |
Copyright terms: Public domain | W3C validator |