Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finlocfin | Structured version Visualization version GIF version |
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 |
finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
finlocfin | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top) | |
2 | simp3 1136 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
3 | simpl1 1189 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) | |
4 | finlocfin.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topopn 21963 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
7 | simpr 484 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
8 | simpl2 1190 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ Fin) | |
9 | ssrab2 4009 | . . . . 5 ⊢ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴 | |
10 | ssfi 8918 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) | |
11 | 8, 9, 10 | sylancl 585 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) |
12 | eleq2 2827 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑥 ∈ 𝑛 ↔ 𝑥 ∈ 𝑋)) | |
13 | ineq2 4137 | . . . . . . . . 9 ⊢ (𝑛 = 𝑋 → (𝑠 ∩ 𝑛) = (𝑠 ∩ 𝑋)) | |
14 | 13 | neeq1d 3002 | . . . . . . . 8 ⊢ (𝑛 = 𝑋 → ((𝑠 ∩ 𝑛) ≠ ∅ ↔ (𝑠 ∩ 𝑋) ≠ ∅)) |
15 | 14 | rabbidv 3404 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅}) |
16 | 15 | eleq1d 2823 | . . . . . 6 ⊢ (𝑛 = 𝑋 → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) |
17 | 12, 16 | anbi12d 630 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin))) |
18 | 17 | rspcev 3552 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
19 | 6, 7, 11, 18 | syl12anc 833 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
20 | 19 | ralrimiva 3107 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
21 | finlocfin.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
22 | 4, 21 | islocfin 22576 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
23 | 1, 2, 20, 22 | syl3anbrc 1341 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Fincfn 8691 Topctop 21950 LocFinclocfin 22563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 df-top 21951 df-locfin 22566 |
This theorem is referenced by: locfincmp 22585 cmppcmp 31710 |
Copyright terms: Public domain | W3C validator |