MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finlocfin Structured version   Visualization version   GIF version

Theorem finlocfin 23435
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
finlocfin.1 𝑋 = 𝐽
finlocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
finlocfin ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))

Proof of Theorem finlocfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top)
2 simp3 1138 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
3 simpl1 1192 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
4 finlocfin.1 . . . . . 6 𝑋 = 𝐽
54topopn 22821 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 simpl2 1193 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐴 ∈ Fin)
9 ssrab2 4027 . . . . 5 {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴
10 ssfi 9082 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
12 eleq2 2820 . . . . . 6 (𝑛 = 𝑋 → (𝑥𝑛𝑥𝑋))
13 ineq2 4161 . . . . . . . . 9 (𝑛 = 𝑋 → (𝑠𝑛) = (𝑠𝑋))
1413neeq1d 2987 . . . . . . . 8 (𝑛 = 𝑋 → ((𝑠𝑛) ≠ ∅ ↔ (𝑠𝑋) ≠ ∅))
1514rabbidv 3402 . . . . . . 7 (𝑛 = 𝑋 → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅})
1615eleq1d 2816 . . . . . 6 (𝑛 = 𝑋 → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin))
1712, 16anbi12d 632 . . . . 5 (𝑛 = 𝑋 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)))
1817rspcev 3572 . . . 4 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
196, 7, 11, 18syl12anc 836 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2019ralrimiva 3124 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
21 finlocfin.2 . . 3 𝑌 = 𝐴
224, 21islocfin 23432 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
231, 2, 20, 22syl3anbrc 1344 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  c0 4280   cuni 4856  cfv 6481  Fincfn 8869  Topctop 22808  LocFinclocfin 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-fin 8873  df-top 22809  df-locfin 23422
This theorem is referenced by:  locfincmp  23441  cmppcmp  33871
  Copyright terms: Public domain W3C validator