MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finlocfin Structured version   Visualization version   GIF version

Theorem finlocfin 23414
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
finlocfin.1 𝑋 = 𝐽
finlocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
finlocfin ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))

Proof of Theorem finlocfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top)
2 simp3 1138 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
3 simpl1 1192 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
4 finlocfin.1 . . . . . 6 𝑋 = 𝐽
54topopn 22800 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 simpl2 1193 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐴 ∈ Fin)
9 ssrab2 4046 . . . . 5 {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴
10 ssfi 9143 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
12 eleq2 2818 . . . . . 6 (𝑛 = 𝑋 → (𝑥𝑛𝑥𝑋))
13 ineq2 4180 . . . . . . . . 9 (𝑛 = 𝑋 → (𝑠𝑛) = (𝑠𝑋))
1413neeq1d 2985 . . . . . . . 8 (𝑛 = 𝑋 → ((𝑠𝑛) ≠ ∅ ↔ (𝑠𝑋) ≠ ∅))
1514rabbidv 3416 . . . . . . 7 (𝑛 = 𝑋 → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅})
1615eleq1d 2814 . . . . . 6 (𝑛 = 𝑋 → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin))
1712, 16anbi12d 632 . . . . 5 (𝑛 = 𝑋 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)))
1817rspcev 3591 . . . 4 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
196, 7, 11, 18syl12anc 836 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2019ralrimiva 3126 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
21 finlocfin.2 . . 3 𝑌 = 𝐴
224, 21islocfin 23411 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
231, 2, 20, 22syl3anbrc 1344 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Fincfn 8921  Topctop 22787  LocFinclocfin 23398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-fin 8925  df-top 22788  df-locfin 23401
This theorem is referenced by:  locfincmp  23420  cmppcmp  33855
  Copyright terms: Public domain W3C validator