![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finlocfin | Structured version Visualization version GIF version |
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 |
finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
finlocfin | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1127 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top) | |
2 | simp3 1129 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
3 | simpl1 1199 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) | |
4 | finlocfin.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topopn 21118 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
7 | simpr 479 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
8 | simpl2 1201 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ Fin) | |
9 | ssrab2 3908 | . . . . 5 ⊢ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴 | |
10 | ssfi 8468 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) | |
11 | 8, 9, 10 | sylancl 580 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) |
12 | eleq2 2848 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑥 ∈ 𝑛 ↔ 𝑥 ∈ 𝑋)) | |
13 | ineq2 4031 | . . . . . . . . 9 ⊢ (𝑛 = 𝑋 → (𝑠 ∩ 𝑛) = (𝑠 ∩ 𝑋)) | |
14 | 13 | neeq1d 3028 | . . . . . . . 8 ⊢ (𝑛 = 𝑋 → ((𝑠 ∩ 𝑛) ≠ ∅ ↔ (𝑠 ∩ 𝑋) ≠ ∅)) |
15 | 14 | rabbidv 3386 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅}) |
16 | 15 | eleq1d 2844 | . . . . . 6 ⊢ (𝑛 = 𝑋 → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) |
17 | 12, 16 | anbi12d 624 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin))) |
18 | 17 | rspcev 3511 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
19 | 6, 7, 11, 18 | syl12anc 827 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
20 | 19 | ralrimiva 3148 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
21 | finlocfin.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
22 | 4, 21 | islocfin 21729 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
23 | 1, 2, 20, 22 | syl3anbrc 1400 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 ∃wrex 3091 {crab 3094 ∩ cin 3791 ⊆ wss 3792 ∅c0 4141 ∪ cuni 4671 ‘cfv 6135 Fincfn 8241 Topctop 21105 LocFinclocfin 21716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-er 8026 df-en 8242 df-fin 8245 df-top 21106 df-locfin 21719 |
This theorem is referenced by: locfincmp 21738 cmppcmp 30523 |
Copyright terms: Public domain | W3C validator |