MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finlocfin Structured version   Visualization version   GIF version

Theorem finlocfin 22671
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
finlocfin.1 𝑋 = 𝐽
finlocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
finlocfin ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))

Proof of Theorem finlocfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top)
2 simp3 1137 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
3 simpl1 1190 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
4 finlocfin.1 . . . . . 6 𝑋 = 𝐽
54topopn 22055 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑋𝐽)
7 simpr 485 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 simpl2 1191 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐴 ∈ Fin)
9 ssrab2 4013 . . . . 5 {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴
10 ssfi 8956 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
12 eleq2 2827 . . . . . 6 (𝑛 = 𝑋 → (𝑥𝑛𝑥𝑋))
13 ineq2 4140 . . . . . . . . 9 (𝑛 = 𝑋 → (𝑠𝑛) = (𝑠𝑋))
1413neeq1d 3003 . . . . . . . 8 (𝑛 = 𝑋 → ((𝑠𝑛) ≠ ∅ ↔ (𝑠𝑋) ≠ ∅))
1514rabbidv 3414 . . . . . . 7 (𝑛 = 𝑋 → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅})
1615eleq1d 2823 . . . . . 6 (𝑛 = 𝑋 → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin))
1712, 16anbi12d 631 . . . . 5 (𝑛 = 𝑋 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)))
1817rspcev 3561 . . . 4 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
196, 7, 11, 18syl12anc 834 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2019ralrimiva 3103 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
21 finlocfin.2 . . 3 𝑌 = 𝐴
224, 21islocfin 22668 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
231, 2, 20, 22syl3anbrc 1342 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  Fincfn 8733  Topctop 22042  LocFinclocfin 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737  df-top 22043  df-locfin 22658
This theorem is referenced by:  locfincmp  22677  cmppcmp  31808
  Copyright terms: Public domain W3C validator