MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finlocfin Structured version   Visualization version   GIF version

Theorem finlocfin 23458
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
finlocfin.1 𝑋 = 𝐽
finlocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
finlocfin ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))

Proof of Theorem finlocfin
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top)
2 simp3 1138 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
3 simpl1 1192 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐽 ∈ Top)
4 finlocfin.1 . . . . . 6 𝑋 = 𝐽
54topopn 22844 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑋𝐽)
7 simpr 484 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝑥𝑋)
8 simpl2 1193 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → 𝐴 ∈ Fin)
9 ssrab2 4055 . . . . 5 {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴
10 ssfi 9187 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
118, 9, 10sylancl 586 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)
12 eleq2 2823 . . . . . 6 (𝑛 = 𝑋 → (𝑥𝑛𝑥𝑋))
13 ineq2 4189 . . . . . . . . 9 (𝑛 = 𝑋 → (𝑠𝑛) = (𝑠𝑋))
1413neeq1d 2991 . . . . . . . 8 (𝑛 = 𝑋 → ((𝑠𝑛) ≠ ∅ ↔ (𝑠𝑋) ≠ ∅))
1514rabbidv 3423 . . . . . . 7 (𝑛 = 𝑋 → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅})
1615eleq1d 2819 . . . . . 6 (𝑛 = 𝑋 → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin))
1712, 16anbi12d 632 . . . . 5 (𝑛 = 𝑋 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)))
1817rspcev 3601 . . . 4 ((𝑋𝐽 ∧ (𝑥𝑋 ∧ {𝑠𝐴 ∣ (𝑠𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
196, 7, 11, 18syl12anc 836 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥𝑋) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2019ralrimiva 3132 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
21 finlocfin.2 . . 3 𝑌 = 𝐴
224, 21islocfin 23455 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
231, 2, 20, 22syl3anbrc 1344 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cin 3925  wss 3926  c0 4308   cuni 4883  cfv 6531  Fincfn 8959  Topctop 22831  LocFinclocfin 23442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963  df-top 22832  df-locfin 23445
This theorem is referenced by:  locfincmp  23464  cmppcmp  33889
  Copyright terms: Public domain W3C validator