MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finlocfin Structured version   Visualization version   GIF version

Theorem finlocfin 23442
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
finlocfin.1 𝑋 = βˆͺ 𝐽
finlocfin.2 π‘Œ = βˆͺ 𝐴
Assertion
Ref Expression
finlocfin ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) β†’ 𝐴 ∈ (LocFinβ€˜π½))

Proof of Theorem finlocfin
Dummy variables 𝑛 𝑠 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) β†’ 𝐽 ∈ Top)
2 simp3 1135 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) β†’ 𝑋 = π‘Œ)
3 simpl1 1188 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ 𝐽 ∈ Top)
4 finlocfin.1 . . . . . 6 𝑋 = βˆͺ 𝐽
54topopn 22826 . . . . 5 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
63, 5syl 17 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ 𝑋 ∈ 𝐽)
7 simpr 483 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝑋)
8 simpl2 1189 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ 𝐴 ∈ Fin)
9 ssrab2 4069 . . . . 5 {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} βŠ† 𝐴
10 ssfi 9196 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} βŠ† 𝐴) β†’ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} ∈ Fin)
118, 9, 10sylancl 584 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} ∈ Fin)
12 eleq2 2814 . . . . . 6 (𝑛 = 𝑋 β†’ (π‘₯ ∈ 𝑛 ↔ π‘₯ ∈ 𝑋))
13 ineq2 4200 . . . . . . . . 9 (𝑛 = 𝑋 β†’ (𝑠 ∩ 𝑛) = (𝑠 ∩ 𝑋))
1413neeq1d 2990 . . . . . . . 8 (𝑛 = 𝑋 β†’ ((𝑠 ∩ 𝑛) β‰  βˆ… ↔ (𝑠 ∩ 𝑋) β‰  βˆ…))
1514rabbidv 3427 . . . . . . 7 (𝑛 = 𝑋 β†’ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…})
1615eleq1d 2810 . . . . . 6 (𝑛 = 𝑋 β†’ ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} ∈ Fin))
1712, 16anbi12d 630 . . . . 5 (𝑛 = 𝑋 β†’ ((π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ (π‘₯ ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} ∈ Fin)))
1817rspcev 3601 . . . 4 ((𝑋 ∈ 𝐽 ∧ (π‘₯ ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) β‰  βˆ…} ∈ Fin)) β†’ βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
196, 7, 11, 18syl12anc 835 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
2019ralrimiva 3136 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) β†’ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
21 finlocfin.2 . . 3 π‘Œ = βˆͺ 𝐴
224, 21islocfin 23439 . 2 (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝐽 ∈ Top ∧ 𝑋 = π‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
231, 2, 20, 22syl3anbrc 1340 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = π‘Œ) β†’ 𝐴 ∈ (LocFinβ€˜π½))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  {crab 3419   ∩ cin 3938   βŠ† wss 3939  βˆ…c0 4318  βˆͺ cuni 4903  β€˜cfv 6543  Fincfn 8962  Topctop 22813  LocFinclocfin 23426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7869  df-1o 8485  df-en 8963  df-fin 8966  df-top 22814  df-locfin 23429
This theorem is referenced by:  locfincmp  23448  cmppcmp  33516
  Copyright terms: Public domain W3C validator