| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finlocfin | Structured version Visualization version GIF version | ||
| Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 |
| finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 |
| Ref | Expression |
|---|---|
| finlocfin | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 3 | simpl1 1192 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) | |
| 4 | finlocfin.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topopn 22793 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
| 7 | simpr 484 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 8 | simpl2 1193 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ Fin) | |
| 9 | ssrab2 4043 | . . . . 5 ⊢ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴 | |
| 10 | ssfi 9137 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) | |
| 11 | 8, 9, 10 | sylancl 586 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) |
| 12 | eleq2 2817 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑥 ∈ 𝑛 ↔ 𝑥 ∈ 𝑋)) | |
| 13 | ineq2 4177 | . . . . . . . . 9 ⊢ (𝑛 = 𝑋 → (𝑠 ∩ 𝑛) = (𝑠 ∩ 𝑋)) | |
| 14 | 13 | neeq1d 2984 | . . . . . . . 8 ⊢ (𝑛 = 𝑋 → ((𝑠 ∩ 𝑛) ≠ ∅ ↔ (𝑠 ∩ 𝑋) ≠ ∅)) |
| 15 | 14 | rabbidv 3413 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅}) |
| 16 | 15 | eleq1d 2813 | . . . . . 6 ⊢ (𝑛 = 𝑋 → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) |
| 17 | 12, 16 | anbi12d 632 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin))) |
| 18 | 17 | rspcev 3588 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 19 | 6, 7, 11, 18 | syl12anc 836 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 20 | 19 | ralrimiva 3125 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
| 21 | finlocfin.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
| 22 | 4, 21 | islocfin 23404 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
| 23 | 1, 2, 20, 22 | syl3anbrc 1344 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ‘cfv 6511 Fincfn 8918 Topctop 22780 LocFinclocfin 23391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 df-top 22781 df-locfin 23394 |
| This theorem is referenced by: locfincmp 23413 cmppcmp 33848 |
| Copyright terms: Public domain | W3C validator |