Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finlocfin | Structured version Visualization version GIF version |
Description: A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
finlocfin.1 | ⊢ 𝑋 = ∪ 𝐽 |
finlocfin.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
finlocfin | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐽 ∈ Top) | |
2 | simp3 1135 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
3 | simpl1 1188 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ Top) | |
4 | finlocfin.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topopn 21606 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ 𝐽) |
7 | simpr 488 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
8 | simpl2 1189 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ Fin) | |
9 | ssrab2 3984 | . . . . 5 ⊢ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴 | |
10 | ssfi 8742 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ⊆ 𝐴) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) | |
11 | 8, 9, 10 | sylancl 589 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin) |
12 | eleq2 2840 | . . . . . 6 ⊢ (𝑛 = 𝑋 → (𝑥 ∈ 𝑛 ↔ 𝑥 ∈ 𝑋)) | |
13 | ineq2 4111 | . . . . . . . . 9 ⊢ (𝑛 = 𝑋 → (𝑠 ∩ 𝑛) = (𝑠 ∩ 𝑋)) | |
14 | 13 | neeq1d 3010 | . . . . . . . 8 ⊢ (𝑛 = 𝑋 → ((𝑠 ∩ 𝑛) ≠ ∅ ↔ (𝑠 ∩ 𝑋) ≠ ∅)) |
15 | 14 | rabbidv 3392 | . . . . . . 7 ⊢ (𝑛 = 𝑋 → {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} = {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅}) |
16 | 15 | eleq1d 2836 | . . . . . 6 ⊢ (𝑛 = 𝑋 → ({𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin ↔ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) |
17 | 12, 16 | anbi12d 633 | . . . . 5 ⊢ (𝑛 = 𝑋 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin))) |
18 | 17 | rspcev 3541 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑥 ∈ 𝑋 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑋) ≠ ∅} ∈ Fin)) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
19 | 6, 7, 11, 18 | syl12anc 835 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) ∧ 𝑥 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
20 | 19 | ralrimiva 3113 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
21 | finlocfin.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
22 | 4, 21 | islocfin 22217 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
23 | 1, 2, 20, 22 | syl3anbrc 1340 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 {crab 3074 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 ∪ cuni 4798 ‘cfv 6335 Fincfn 8527 Topctop 21593 LocFinclocfin 22204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1o 8112 df-en 8528 df-fin 8531 df-top 21594 df-locfin 22207 |
This theorem is referenced by: locfincmp 22226 cmppcmp 31329 |
Copyright terms: Public domain | W3C validator |