Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspw 4543 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pweq 4546 pwel 5299 marypha1lem 9122 pwwf 9496 rankpwi 9512 ackbij2lem1 9906 fictb 9932 ssfin2 10007 ssfin3ds 10017 ttukeylem2 10197 hashbcss 16633 isacs1i 17283 mreacs 17284 acsfn 17285 isacs3lem 18175 isacs5lem 18178 tgcmp 22460 imastopn 22779 fgabs 22938 fgtr 22949 trfg 22950 ssufl 22977 alexsubb 23105 cfiluweak 23355 cmetss 24385 minveclem4a 24499 minveclem4 24501 ldsysgenld 32028 madess 33986 neibastop1 34475 neibastop2lem 34476 neibastop2 34477 sstotbnd2 35859 isnacs3 40448 aomclem2 40796 sge0iunmptlemre 43843 |
Copyright terms: Public domain | W3C validator |