| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4577 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: pweq 4580 pwel 5339 marypha1lem 9391 pwwf 9767 rankpwi 9783 ackbij2lem1 10178 fictb 10204 ssfin2 10280 ssfin3ds 10290 ttukeylem2 10470 hashbcss 16982 isacs1i 17625 mreacs 17626 acsfn 17627 isacs3lem 18508 isacs5lem 18511 tgcmp 23295 imastopn 23614 fgabs 23773 fgtr 23784 trfg 23785 ssufl 23812 alexsubb 23940 cfiluweak 24189 cmetss 25223 minveclem4a 25337 minveclem4 25339 madess 27795 ldsysgenld 34157 neibastop1 36354 neibastop2lem 36355 neibastop2 36356 sstotbnd2 37775 prjcrv0 42628 isnacs3 42705 aomclem2 43051 sge0iunmptlemre 46420 |
| Copyright terms: Public domain | W3C validator |