Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspw 4546 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: pweq 4549 pwel 5304 marypha1lem 9192 pwwf 9565 rankpwi 9581 ackbij2lem1 9975 fictb 10001 ssfin2 10076 ssfin3ds 10086 ttukeylem2 10266 hashbcss 16705 isacs1i 17366 mreacs 17367 acsfn 17368 isacs3lem 18260 isacs5lem 18263 tgcmp 22552 imastopn 22871 fgabs 23030 fgtr 23041 trfg 23042 ssufl 23069 alexsubb 23197 cfiluweak 23447 cmetss 24480 minveclem4a 24594 minveclem4 24596 ldsysgenld 32128 madess 34059 neibastop1 34548 neibastop2lem 34549 neibastop2 34550 sstotbnd2 35932 isnacs3 40532 aomclem2 40880 sge0iunmptlemre 43953 |
Copyright terms: Public domain | W3C validator |