| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4586 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: pweq 4589 pwel 5351 marypha1lem 9445 pwwf 9821 rankpwi 9837 ackbij2lem1 10232 fictb 10258 ssfin2 10334 ssfin3ds 10344 ttukeylem2 10524 hashbcss 17024 isacs1i 17669 mreacs 17670 acsfn 17671 isacs3lem 18552 isacs5lem 18555 tgcmp 23339 imastopn 23658 fgabs 23817 fgtr 23828 trfg 23829 ssufl 23856 alexsubb 23984 cfiluweak 24233 cmetss 25268 minveclem4a 25382 minveclem4 25384 madess 27840 ldsysgenld 34191 neibastop1 36377 neibastop2lem 36378 neibastop2 36379 sstotbnd2 37798 prjcrv0 42656 isnacs3 42733 aomclem2 43079 sge0iunmptlemre 46444 |
| Copyright terms: Public domain | W3C validator |