![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspw 4633 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pweq 4636 pwel 5399 marypha1lem 9502 pwwf 9876 rankpwi 9892 ackbij2lem1 10287 fictb 10313 ssfin2 10389 ssfin3ds 10399 ttukeylem2 10579 hashbcss 17051 isacs1i 17715 mreacs 17716 acsfn 17717 isacs3lem 18612 isacs5lem 18615 tgcmp 23430 imastopn 23749 fgabs 23908 fgtr 23919 trfg 23920 ssufl 23947 alexsubb 24075 cfiluweak 24325 cmetss 25369 minveclem4a 25483 minveclem4 25485 madess 27933 ldsysgenld 34124 neibastop1 36325 neibastop2lem 36326 neibastop2 36327 sstotbnd2 37734 prjcrv0 42588 isnacs3 42666 aomclem2 43012 sge0iunmptlemre 46336 |
Copyright terms: Public domain | W3C validator |