| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4558 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 𝒫 cpw 4547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: pweq 4561 pwel 5317 marypha1lem 9317 pwwf 9700 rankpwi 9716 ackbij2lem1 10109 fictb 10135 ssfin2 10211 ssfin3ds 10221 ttukeylem2 10401 hashbcss 16916 isacs1i 17563 mreacs 17564 acsfn 17565 isacs3lem 18448 isacs5lem 18451 tgcmp 23316 imastopn 23635 fgabs 23794 fgtr 23805 trfg 23806 ssufl 23833 alexsubb 23961 cfiluweak 24209 cmetss 25243 minveclem4a 25357 minveclem4 25359 madess 27821 ldsysgenld 34173 neibastop1 36403 neibastop2lem 36404 neibastop2 36405 sstotbnd2 37813 prjcrv0 42725 isnacs3 42802 aomclem2 43147 sge0iunmptlemre 46512 |
| Copyright terms: Public domain | W3C validator |