MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspwd Structured version   Visualization version   GIF version

Theorem sspwd 4560
Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.)
Hypothesis
Ref Expression
sspwd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
sspwd (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwd
StepHypRef Expression
1 sspwd.1 . 2 (𝜑𝐴𝐵)
2 sspw 4558 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2syl 17 1 (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-pw 4549
This theorem is referenced by:  pweq  4561  pwel  5317  marypha1lem  9317  pwwf  9700  rankpwi  9716  ackbij2lem1  10109  fictb  10135  ssfin2  10211  ssfin3ds  10221  ttukeylem2  10401  hashbcss  16916  isacs1i  17563  mreacs  17564  acsfn  17565  isacs3lem  18448  isacs5lem  18451  tgcmp  23316  imastopn  23635  fgabs  23794  fgtr  23805  trfg  23806  ssufl  23833  alexsubb  23961  cfiluweak  24209  cmetss  25243  minveclem4a  25357  minveclem4  25359  madess  27821  ldsysgenld  34173  neibastop1  36403  neibastop2lem  36404  neibastop2  36405  sstotbnd2  37813  prjcrv0  42725  isnacs3  42802  aomclem2  43147  sge0iunmptlemre  46512
  Copyright terms: Public domain W3C validator