| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4574 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pweq 4577 pwel 5336 marypha1lem 9384 pwwf 9760 rankpwi 9776 ackbij2lem1 10171 fictb 10197 ssfin2 10273 ssfin3ds 10283 ttukeylem2 10463 hashbcss 16975 isacs1i 17618 mreacs 17619 acsfn 17620 isacs3lem 18501 isacs5lem 18504 tgcmp 23288 imastopn 23607 fgabs 23766 fgtr 23777 trfg 23778 ssufl 23805 alexsubb 23933 cfiluweak 24182 cmetss 25216 minveclem4a 25330 minveclem4 25332 madess 27788 ldsysgenld 34150 neibastop1 36347 neibastop2lem 36348 neibastop2 36349 sstotbnd2 37768 prjcrv0 42621 isnacs3 42698 aomclem2 43044 sge0iunmptlemre 46413 |
| Copyright terms: Public domain | W3C validator |