| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4562 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: pweq 4565 pwel 5320 marypha1lem 9323 pwwf 9703 rankpwi 9719 ackbij2lem1 10112 fictb 10138 ssfin2 10214 ssfin3ds 10224 ttukeylem2 10404 hashbcss 16916 isacs1i 17563 mreacs 17564 acsfn 17565 isacs3lem 18448 isacs5lem 18451 tgcmp 23286 imastopn 23605 fgabs 23764 fgtr 23775 trfg 23776 ssufl 23803 alexsubb 23931 cfiluweak 24180 cmetss 25214 minveclem4a 25328 minveclem4 25330 madess 27790 ldsysgenld 34133 neibastop1 36343 neibastop2lem 36344 neibastop2 36345 sstotbnd2 37764 prjcrv0 42616 isnacs3 42693 aomclem2 43038 sge0iunmptlemre 46406 |
| Copyright terms: Public domain | W3C validator |