| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4570 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3911 𝒫 cpw 4559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: pweq 4573 pwel 5331 marypha1lem 9360 pwwf 9736 rankpwi 9752 ackbij2lem1 10147 fictb 10173 ssfin2 10249 ssfin3ds 10259 ttukeylem2 10439 hashbcss 16951 isacs1i 17598 mreacs 17599 acsfn 17600 isacs3lem 18483 isacs5lem 18486 tgcmp 23321 imastopn 23640 fgabs 23799 fgtr 23810 trfg 23811 ssufl 23838 alexsubb 23966 cfiluweak 24215 cmetss 25249 minveclem4a 25363 minveclem4 25365 madess 27825 ldsysgenld 34143 neibastop1 36340 neibastop2lem 36341 neibastop2 36342 sstotbnd2 37761 prjcrv0 42614 isnacs3 42691 aomclem2 43037 sge0iunmptlemre 46406 |
| Copyright terms: Public domain | W3C validator |