| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version | ||
| Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspw 4586 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: pweq 4589 pwel 5351 marypha1lem 9443 pwwf 9819 rankpwi 9835 ackbij2lem1 10230 fictb 10256 ssfin2 10332 ssfin3ds 10342 ttukeylem2 10522 hashbcss 17022 isacs1i 17667 mreacs 17668 acsfn 17669 isacs3lem 18550 isacs5lem 18553 tgcmp 23337 imastopn 23656 fgabs 23815 fgtr 23826 trfg 23827 ssufl 23854 alexsubb 23982 cfiluweak 24231 cmetss 25266 minveclem4a 25380 minveclem4 25382 madess 27832 ldsysgenld 34137 neibastop1 36323 neibastop2lem 36324 neibastop2 36325 sstotbnd2 37744 prjcrv0 42603 isnacs3 42680 aomclem2 43026 sge0iunmptlemre 46392 |
| Copyright terms: Public domain | W3C validator |