![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwd | Structured version Visualization version GIF version |
Description: The powerclass preserves inclusion (deduction form). (Contributed by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
sspwd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sspwd | ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspw 4606 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3941 𝒫 cpw 4595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-ss 3958 df-pw 4597 |
This theorem is referenced by: pweq 4609 pwel 5370 marypha1lem 9425 pwwf 9799 rankpwi 9815 ackbij2lem1 10211 fictb 10237 ssfin2 10312 ssfin3ds 10322 ttukeylem2 10502 hashbcss 16938 isacs1i 17602 mreacs 17603 acsfn 17604 isacs3lem 18499 isacs5lem 18502 tgcmp 23229 imastopn 23548 fgabs 23707 fgtr 23718 trfg 23719 ssufl 23746 alexsubb 23874 cfiluweak 24124 cmetss 25168 minveclem4a 25282 minveclem4 25284 madess 27722 ldsysgenld 33650 neibastop1 35735 neibastop2lem 35736 neibastop2 35737 sstotbnd2 37136 prjcrv0 41889 isnacs3 41962 aomclem2 42311 sge0iunmptlemre 45641 |
Copyright terms: Public domain | W3C validator |