Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwunssOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pwunss 4550 as of 30-Dec-2023. (Contributed by NM, 23-Nov-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwunssOLD | ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun 4119 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
2 | elun 4079 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵)) | |
3 | velpw 4535 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
4 | velpw 4535 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
5 | 3, 4 | orbi12i 911 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
6 | 2, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
7 | velpw 4535 | . . 3 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
8 | 1, 6, 7 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵)) |
9 | 8 | ssriv 3921 | 1 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |