Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq1i | Structured version Visualization version GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
oveq1i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq1 7225 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) |
Copyright terms: Public domain | W3C validator |