| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > qlaxr3i | Structured version Visualization version GIF version | ||
| Description: A variation of the orthomodular law, showing Cℋ is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| qlaxr3.1 | ⊢ 𝐴 ∈ Cℋ |
| qlaxr3.2 | ⊢ 𝐵 ∈ Cℋ |
| qlaxr3.3 | ⊢ 𝐶 ∈ Cℋ |
| qlaxr3.4 | ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) |
| Ref | Expression |
|---|---|
| qlaxr3i | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlaxr3.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
| 2 | qlaxr3.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1, 2 | chjcli 31436 | . . . 4 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Cℋ |
| 4 | 3 | chshii 31206 | . . 3 ⊢ (𝐴 ∨ℋ 𝐵) ∈ Sℋ |
| 5 | 1, 2 | chub1i 31448 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ 𝐵) |
| 6 | incom 4168 | . . . . . . 7 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) | |
| 7 | 1 | choccli 31286 | . . . . . . . 8 ⊢ (⊥‘𝐴) ∈ Cℋ |
| 8 | 2 | choccli 31286 | . . . . . . . 8 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 9 | 1, 2 | cmj1i 31583 | . . . . . . . . . 10 ⊢ 𝐴 𝐶ℋ (𝐴 ∨ℋ 𝐵) |
| 10 | 1, 3, 9 | cmcmii 31576 | . . . . . . . . 9 ⊢ (𝐴 ∨ℋ 𝐵) 𝐶ℋ 𝐴 |
| 11 | 3, 1, 10 | cmcm2ii 31577 | . . . . . . . 8 ⊢ (𝐴 ∨ℋ 𝐵) 𝐶ℋ (⊥‘𝐴) |
| 12 | 1, 2 | cmj2i 31584 | . . . . . . . . . 10 ⊢ 𝐵 𝐶ℋ (𝐴 ∨ℋ 𝐵) |
| 13 | 2, 3, 12 | cmcmii 31576 | . . . . . . . . 9 ⊢ (𝐴 ∨ℋ 𝐵) 𝐶ℋ 𝐵 |
| 14 | 3, 2, 13 | cmcm2ii 31577 | . . . . . . . 8 ⊢ (𝐴 ∨ℋ 𝐵) 𝐶ℋ (⊥‘𝐵) |
| 15 | 3, 7, 8, 11, 14 | fh1i 31600 | . . . . . . 7 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) = (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∨ℋ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵))) |
| 16 | 6, 15 | eqtr3i 2754 | . . . . . 6 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) = (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∨ℋ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵))) |
| 17 | qlaxr3.3 | . . . . . . . . . 10 ⊢ 𝐶 ∈ Cℋ | |
| 18 | 17 | chjoi 31467 | . . . . . . . . 9 ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ℋ |
| 19 | qlaxr3.4 | . . . . . . . . 9 ⊢ (𝐶 ∨ℋ (⊥‘𝐶)) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) | |
| 20 | 18, 19 | eqtr3i 2754 | . . . . . . . 8 ⊢ ℋ = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) |
| 21 | choc0 31305 | . . . . . . . 8 ⊢ (⊥‘0ℋ) = ℋ | |
| 22 | 7, 8 | chjcli 31436 | . . . . . . . . 9 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
| 23 | 22, 3 | chdmm1i 31456 | . . . . . . . 8 ⊢ (⊥‘(((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵))) = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘(𝐴 ∨ℋ 𝐵))) |
| 24 | 20, 21, 23 | 3eqtr4i 2762 | . . . . . . 7 ⊢ (⊥‘0ℋ) = (⊥‘(((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵))) |
| 25 | 22, 3 | chincli 31439 | . . . . . . . 8 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) ∈ Cℋ |
| 26 | h0elch 31234 | . . . . . . . 8 ⊢ 0ℋ ∈ Cℋ | |
| 27 | 25, 26 | chcon3i 31445 | . . . . . . 7 ⊢ ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) = 0ℋ ↔ (⊥‘0ℋ) = (⊥‘(((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)))) |
| 28 | 24, 27 | mpbir 231 | . . . . . 6 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (𝐴 ∨ℋ 𝐵)) = 0ℋ |
| 29 | 16, 28 | eqtr3i 2754 | . . . . 5 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∨ℋ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵))) = 0ℋ |
| 30 | 3, 7 | chincli 31439 | . . . . . 6 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ Cℋ |
| 31 | 3, 8 | chincli 31439 | . . . . . 6 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵)) ∈ Cℋ |
| 32 | 30, 31 | chj00i 31466 | . . . . 5 ⊢ ((((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ∧ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵)) = 0ℋ) ↔ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∨ℋ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵))) = 0ℋ) |
| 33 | 29, 32 | mpbir 231 | . . . 4 ⊢ (((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ ∧ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵)) = 0ℋ) |
| 34 | 33 | simpli 483 | . . 3 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) = 0ℋ |
| 35 | 1, 4, 5, 34 | omlsii 31382 | . 2 ⊢ 𝐴 = (𝐴 ∨ℋ 𝐵) |
| 36 | 2, 1 | chub2i 31449 | . . 3 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ 𝐵) |
| 37 | 33 | simpri 485 | . . 3 ⊢ ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐵)) = 0ℋ |
| 38 | 2, 4, 36, 37 | omlsii 31382 | . 2 ⊢ 𝐵 = (𝐴 ∨ℋ 𝐵) |
| 39 | 35, 38 | eqtr4i 2755 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ‘cfv 6499 (class class class)co 7369 ℋchba 30898 Cℋ cch 30908 ⊥cort 30909 ∨ℋ chj 30912 0ℋc0h 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 ax-hv0cl 30982 ax-hvaddid 30983 ax-hfvmul 30984 ax-hvmulid 30985 ax-hvmulass 30986 ax-hvdistr1 30987 ax-hvdistr2 30988 ax-hvmul0 30989 ax-hfi 31058 ax-his1 31061 ax-his2 31062 ax-his3 31063 ax-his4 31064 ax-hcompl 31181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-cn 23147 df-cnp 23148 df-lm 23149 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cfil 25188 df-cau 25189 df-cmet 25190 df-grpo 30472 df-gid 30473 df-ginv 30474 df-gdiv 30475 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-vs 30578 df-nmcv 30579 df-ims 30580 df-dip 30680 df-ssp 30701 df-ph 30792 df-cbn 30842 df-hnorm 30947 df-hba 30948 df-hvsub 30950 df-hlim 30951 df-hcau 30952 df-sh 31186 df-ch 31200 df-oc 31231 df-ch0 31232 df-shs 31287 df-chj 31289 df-cm 31562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |