Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn Structured version   Visualization version   GIF version

Theorem intimasn 43628
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥,𝑎)

Proof of Theorem intimasn
Dummy variables 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-5 1910 . 2 (𝐵𝑉 → ∀𝑦 𝐵𝑉)
2 r19.12sn 4696 . . . 4 (𝐵𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎))
32biimprd 248 . . 3 (𝐵𝑉 → (∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
43alimi 1811 . 2 (∀𝑦 𝐵𝑉 → ∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
5 intimag 43627 . 2 (∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
61, 4, 53syl 18 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {csn 4601  cop 4607   cint 4922  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  intimasn2  43629  brtrclfv2  43698
  Copyright terms: Public domain W3C validator