Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn Structured version   Visualization version   GIF version

Theorem intimasn 43136
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥,𝑎)

Proof of Theorem intimasn
Dummy variables 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-5 1905 . 2 (𝐵𝑉 → ∀𝑦 𝐵𝑉)
2 r19.12sn 4729 . . . 4 (𝐵𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎))
32biimprd 247 . . 3 (𝐵𝑉 → (∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
43alimi 1805 . 2 (∀𝑦 𝐵𝑉 → ∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
5 intimag 43135 . 2 (∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
61, 4, 53syl 18 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531   = wceq 1533  wcel 2098  {cab 2705  wral 3058  wrex 3067  {csn 4632  cop 4638   cint 4953  cima 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-xp 5688  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695
This theorem is referenced by:  intimasn2  43137  brtrclfv2  43206
  Copyright terms: Public domain W3C validator