| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intimasn | Structured version Visualization version GIF version | ||
| Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| intimasn | ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑦 𝐵 ∈ 𝑉) | |
| 2 | r19.12sn 4672 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎 ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎)) | |
| 3 | 2 | biimprd 248 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
| 4 | 3 | alimi 1811 | . 2 ⊢ (∀𝑦 𝐵 ∈ 𝑉 → ∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
| 5 | intimag 43649 | . 2 ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | |
| 6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 {csn 4577 〈cop 4583 ∩ cint 4896 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: intimasn2 43651 brtrclfv2 43720 |
| Copyright terms: Public domain | W3C validator |