![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimasn | Structured version Visualization version GIF version |
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimasn | ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1905 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑦 𝐵 ∈ 𝑉) | |
2 | r19.12sn 4729 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎)) | |
3 | 2 | biimprd 247 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎)) |
4 | 3 | alimi 1805 | . 2 ⊢ (∀𝑦 𝐵 ∈ 𝑉 → ∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎)) |
5 | intimag 43135 | . 2 ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 ⟨𝑏, 𝑦⟩ ∈ 𝑎) → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | |
6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 {csn 4632 ⟨cop 4638 ∩ cint 4953 “ cima 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 |
This theorem is referenced by: intimasn2 43137 brtrclfv2 43206 |
Copyright terms: Public domain | W3C validator |