Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intimasn Structured version   Visualization version   GIF version

Theorem intimasn 42393
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.)
Assertion
Ref Expression
intimasn (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥,𝑎)

Proof of Theorem intimasn
Dummy variables 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-5 1913 . 2 (𝐵𝑉 → ∀𝑦 𝐵𝑉)
2 r19.12sn 4723 . . . 4 (𝐵𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎 ↔ ∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎))
32biimprd 247 . . 3 (𝐵𝑉 → (∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
43alimi 1813 . 2 (∀𝑦 𝐵𝑉 → ∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎))
5 intimag 42392 . 2 (∀𝑦(∀𝑎𝐴𝑏 ∈ {𝐵}⟨𝑏, 𝑦⟩ ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎𝐴𝑏, 𝑦⟩ ∈ 𝑎) → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
61, 4, 53syl 18 1 (𝐵𝑉 → ( 𝐴 “ {𝐵}) = {𝑥 ∣ ∃𝑎𝐴 𝑥 = (𝑎 “ {𝐵})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  {csn 4627  cop 4633   cint 4949  cima 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688
This theorem is referenced by:  intimasn2  42394  brtrclfv2  42463
  Copyright terms: Public domain W3C validator