| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > intimasn | Structured version Visualization version GIF version | ||
| Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| intimasn | ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑦 𝐵 ∈ 𝑉) | |
| 2 | r19.12sn 4720 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎 ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎)) | |
| 3 | 2 | biimprd 248 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
| 4 | 3 | alimi 1811 | . 2 ⊢ (∀𝑦 𝐵 ∈ 𝑉 → ∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
| 5 | intimag 43669 | . 2 ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | |
| 6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 {csn 4626 〈cop 4632 ∩ cint 4946 “ cima 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 |
| This theorem is referenced by: intimasn2 43671 brtrclfv2 43740 |
| Copyright terms: Public domain | W3C validator |