![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > intimasn | Structured version Visualization version GIF version |
Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
Ref | Expression |
---|---|
intimasn | ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1907 | . 2 ⊢ (𝐵 ∈ 𝑉 → ∀𝑦 𝐵 ∈ 𝑉) | |
2 | r19.12sn 4724 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎 ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎)) | |
3 | 2 | biimprd 248 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
4 | 3 | alimi 1807 | . 2 ⊢ (∀𝑦 𝐵 ∈ 𝑉 → ∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎)) |
5 | intimag 43645 | . 2 ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ {𝐵}〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ {𝐵}∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | |
6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1534 = wceq 1536 ∈ wcel 2105 {cab 2711 ∀wral 3058 ∃wrex 3067 {csn 4630 〈cop 4636 ∩ cint 4950 “ cima 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 |
This theorem is referenced by: intimasn2 43647 brtrclfv2 43716 |
Copyright terms: Public domain | W3C validator |