Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | psrass.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
4 | | psrass.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
5 | | psrass.t |
. . . . 5
⊢ × =
(.r‘𝑆) |
6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | psrass.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | psrass.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
9 | 1, 4, 5, 6, 7, 8 | psrmulcl 21157 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ 𝐵) |
10 | | psrass.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
11 | 1, 4, 5, 6, 9, 10 | psrmulcl 21157 |
. . . 4
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) ∈ 𝐵) |
12 | 1, 2, 3, 4, 11 | psrelbas 21148 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍):𝐷⟶(Base‘𝑅)) |
13 | 12 | ffnd 6601 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) Fn 𝐷) |
14 | 1, 4, 5, 6, 8, 10 | psrmulcl 21157 |
. . . . 5
⊢ (𝜑 → (𝑌 × 𝑍) ∈ 𝐵) |
15 | 1, 4, 5, 6, 7, 14 | psrmulcl 21157 |
. . . 4
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)) ∈ 𝐵) |
16 | 1, 2, 3, 4, 15 | psrelbas 21148 |
. . 3
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)):𝐷⟶(Base‘𝑅)) |
17 | 16 | ffnd 6601 |
. 2
⊢ (𝜑 → (𝑋 × (𝑌 × 𝑍)) Fn 𝐷) |
18 | | eqid 2738 |
. . . . 5
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} = {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} |
19 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝐷) |
20 | | ringcmn 19820 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
21 | 6, 20 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑅 ∈ CMnd) |
23 | 6 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑅 ∈ Ring) |
24 | 23 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑅 ∈ Ring) |
25 | 1, 2, 3, 4, 7 | psrelbas 21148 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
26 | 25 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑋:𝐷⟶(Base‘𝑅)) |
27 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
28 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑗 → (𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥)) |
29 | 28 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↔ (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥)) |
30 | 27, 29 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥)) |
31 | 30 | simpld 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∈ 𝐷) |
32 | 26, 31 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
33 | 32 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
34 | 1, 2, 3, 4, 8 | psrelbas 21148 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
35 | 34 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑌:𝐷⟶(Base‘𝑅)) |
36 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) |
37 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝑛 → (ℎ ∘r ≤ (𝑥 ∘f − 𝑗) ↔ 𝑛 ∘r ≤ (𝑥 ∘f − 𝑗))) |
38 | 37 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↔ (𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ (𝑥 ∘f − 𝑗))) |
39 | 36, 38 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (𝑛 ∈ 𝐷 ∧ 𝑛 ∘r ≤ (𝑥 ∘f − 𝑗))) |
40 | 39 | simpld 495 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑛 ∈ 𝐷) |
41 | 35, 40 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (𝑌‘𝑛) ∈ (Base‘𝑅)) |
42 | 1, 2, 3, 4, 10 | psrelbas 21148 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍:𝐷⟶(Base‘𝑅)) |
43 | 42 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑍:𝐷⟶(Base‘𝑅)) |
44 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
45 | 3 | psrbagf 21121 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝐷 → 𝑗:𝐼⟶ℕ0) |
46 | 31, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗:𝐼⟶ℕ0) |
47 | 30 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑗 ∘r ≤ 𝑥) |
48 | 3 | psrbagcon 21133 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑗:𝐼⟶ℕ0 ∧ 𝑗 ∘r ≤ 𝑥) → ((𝑥 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑗) ∘r ≤ 𝑥)) |
49 | 44, 46, 47, 48 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑗) ∘r ≤ 𝑥)) |
50 | 49 | simpld 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑗) ∈ 𝐷) |
51 | 50 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (𝑥 ∘f − 𝑗) ∈ 𝐷) |
52 | 3 | psrbagf 21121 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝐷 → 𝑛:𝐼⟶ℕ0) |
53 | 40, 52 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑛:𝐼⟶ℕ0) |
54 | 39 | simprd 496 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → 𝑛 ∘r ≤ (𝑥 ∘f − 𝑗)) |
55 | 3 | psrbagcon 21133 |
. . . . . . . . . . 11
⊢ (((𝑥 ∘f −
𝑗) ∈ 𝐷 ∧ 𝑛:𝐼⟶ℕ0 ∧ 𝑛 ∘r ≤ (𝑥 ∘f −
𝑗)) → (((𝑥 ∘f −
𝑗) ∘f
− 𝑛) ∈ 𝐷 ∧ ((𝑥 ∘f − 𝑗) ∘f −
𝑛) ∘r ≤
(𝑥 ∘f
− 𝑗))) |
56 | 51, 53, 54, 55 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (((𝑥 ∘f − 𝑗) ∘f −
𝑛) ∈ 𝐷 ∧ ((𝑥 ∘f − 𝑗) ∘f −
𝑛) ∘r ≤
(𝑥 ∘f
− 𝑗))) |
57 | 56 | simpld 495 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → ((𝑥 ∘f − 𝑗) ∘f −
𝑛) ∈ 𝐷) |
58 | 43, 57 | ffvelrnd 6962 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → (𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)) ∈
(Base‘𝑅)) |
59 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
60 | 2, 59 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑛) ∈ (Base‘𝑅) ∧ (𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)) ∈
(Base‘𝑅)) →
((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))) ∈
(Base‘𝑅)) |
61 | 24, 41, 58, 60 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))) ∈
(Base‘𝑅)) |
62 | 2, 59 | ringcl 19800 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))) ∈
(Base‘𝑅)) →
((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈
(Base‘𝑅)) |
63 | 24, 33, 61, 62 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈
(Base‘𝑅)) |
64 | 63 | anasss 467 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ∧ 𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)})) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈
(Base‘𝑅)) |
65 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑛 = (𝑘 ∘f − 𝑗) → (𝑌‘𝑛) = (𝑌‘(𝑘 ∘f − 𝑗))) |
66 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑛 = (𝑘 ∘f − 𝑗) → ((𝑥 ∘f − 𝑗) ∘f −
𝑛) = ((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))) |
67 | 66 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑛 = (𝑘 ∘f − 𝑗) → (𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)) = (𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))) |
68 | 65, 67 | oveq12d 7293 |
. . . . . 6
⊢ (𝑛 = (𝑘 ∘f − 𝑗) → ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))) = ((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))))) |
69 | 68 | oveq2d 7291 |
. . . . 5
⊢ (𝑛 = (𝑘 ∘f − 𝑗) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))))) |
70 | 3, 18, 19, 2, 22, 64, 69 | psrass1lem 21146 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))))))))) = (𝑅 Σg
(𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))))))))) |
71 | 7 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑋 ∈ 𝐵) |
72 | 8 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑌 ∈ 𝐵) |
73 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) |
74 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑘 → (𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥)) |
75 | 74 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↔ (𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥)) |
76 | 73, 75 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥)) |
77 | 76 | simpld 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∈ 𝐷) |
78 | 1, 4, 59, 5, 3, 71, 72, 77 | psrmulval 21155 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋 × 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))))) |
79 | 78 | oveq1d 7290 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))) = ((𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))) |
80 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
81 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
82 | 6 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑅 ∈ Ring) |
83 | 3 | psrbaglefi 21135 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝐷 → {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ∈ Fin) |
84 | 77, 83 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ∈ Fin) |
85 | 42 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑍:𝐷⟶(Base‘𝑅)) |
86 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑥 ∈ 𝐷) |
87 | 3 | psrbagf 21121 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐷 → 𝑘:𝐼⟶ℕ0) |
88 | 77, 87 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘:𝐼⟶ℕ0) |
89 | 76 | simprd 496 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑘 ∘r ≤ 𝑥) |
90 | 3 | psrbagcon 21133 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑘:𝐼⟶ℕ0 ∧ 𝑘 ∘r ≤ 𝑥) → ((𝑥 ∘f − 𝑘) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑘) ∘r ≤ 𝑥)) |
91 | 86, 88, 89, 90 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑥 ∘f − 𝑘) ∈ 𝐷 ∧ (𝑥 ∘f − 𝑘) ∘r ≤ 𝑥)) |
92 | 91 | simpld 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑘) ∈ 𝐷) |
93 | 85, 92 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑍‘(𝑥 ∘f − 𝑘)) ∈ (Base‘𝑅)) |
94 | 82 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
95 | 25 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
96 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) |
97 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (ℎ = 𝑗 → (ℎ ∘r ≤ 𝑘 ↔ 𝑗 ∘r ≤ 𝑘)) |
98 | 97 | elrab 3624 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↔ (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘)) |
99 | 96, 98 | sylib 217 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑘)) |
100 | 99 | simpld 495 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑗 ∈ 𝐷) |
101 | 95, 100 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑋‘𝑗) ∈ (Base‘𝑅)) |
102 | 34 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
103 | 77 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
104 | 100, 45 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑗:𝐼⟶ℕ0) |
105 | 99 | simprd 496 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑗 ∘r ≤ 𝑘) |
106 | 3 | psrbagcon 21133 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑗:𝐼⟶ℕ0 ∧ 𝑗 ∘r ≤ 𝑘) → ((𝑘 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑗) ∘r ≤ 𝑘)) |
107 | 103, 104,
105, 106 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑗) ∈ 𝐷 ∧ (𝑘 ∘f − 𝑗) ∘r ≤ 𝑘)) |
108 | 107 | simpld 495 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ 𝐷) |
109 | 102, 108 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑌‘(𝑘 ∘f − 𝑗)) ∈ (Base‘𝑅)) |
110 | 2, 59 | ringcl 19800 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘f − 𝑗)) ∈ (Base‘𝑅)) → ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗))) ∈ (Base‘𝑅)) |
111 | 94, 101, 109, 110 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗))) ∈ (Base‘𝑅)) |
112 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))) = (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))) |
113 | | fvex 6787 |
. . . . . . . . . 10
⊢
(0g‘𝑅) ∈ V |
114 | 113 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (0g‘𝑅) ∈ V) |
115 | 112, 84, 111, 114 | fsuppmptdm 9139 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))) finSupp
(0g‘𝑅)) |
116 | 2, 80, 81, 59, 82, 84, 93, 111, 115 | gsummulc1 19845 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) = ((𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))) |
117 | 93 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑍‘(𝑥 ∘f − 𝑘)) ∈ (Base‘𝑅)) |
118 | 2, 59 | ringass 19803 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑋‘𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘 ∘f − 𝑗)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑥 ∘f − 𝑘)) ∈ (Base‘𝑅))) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) |
119 | 94, 101, 109, 117, 118 | syl13anc 1371 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) |
120 | 3 | psrbagf 21121 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐷 → 𝑥:𝐼⟶ℕ0) |
121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
122 | 121 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑥:𝐼⟶ℕ0) |
123 | 122 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑥‘𝑧) ∈
ℕ0) |
124 | 88 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
125 | 124 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
126 | 104 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑗‘𝑧) ∈
ℕ0) |
127 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥‘𝑧) ∈ ℕ0 → (𝑥‘𝑧) ∈ ℂ) |
128 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑧) ∈ ℕ0 → (𝑘‘𝑧) ∈ ℂ) |
129 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗‘𝑧) ∈ ℕ0 → (𝑗‘𝑧) ∈ ℂ) |
130 | | nnncan2 11258 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥‘𝑧) ∈ ℂ ∧ (𝑘‘𝑧) ∈ ℂ ∧ (𝑗‘𝑧) ∈ ℂ) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
131 | 127, 128,
129, 130 | syl3an 1159 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥‘𝑧) ∈ ℕ0 ∧ (𝑘‘𝑧) ∈ ℕ0 ∧ (𝑗‘𝑧) ∈ ℕ0) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
132 | 123, 125,
126, 131 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))) = ((𝑥‘𝑧) − (𝑘‘𝑧))) |
133 | 132 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑧 ∈ 𝐼 ↦ (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧)))) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑘‘𝑧)))) |
134 | | psrring.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
135 | 134 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝐼 ∈ 𝑉) |
137 | | ovexd 7310 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → ((𝑥‘𝑧) − (𝑗‘𝑧)) ∈ V) |
138 | | ovexd 7310 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → ((𝑘‘𝑧) − (𝑗‘𝑧)) ∈ V) |
139 | 122 | feqmptd 6837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑥 = (𝑧 ∈ 𝐼 ↦ (𝑥‘𝑧))) |
140 | 104 | feqmptd 6837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑗 = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
141 | 136, 123,
126, 139, 140 | offval2 7553 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑥 ∘f − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑗‘𝑧)))) |
142 | 124 | feqmptd 6837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → 𝑘 = (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧))) |
143 | 136, 125,
126, 142, 140 | offval2 7553 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑗‘𝑧)))) |
144 | 136, 137,
138, 141, 143 | offval2 7553 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)) = (𝑧 ∈ 𝐼 ↦ (((𝑥‘𝑧) − (𝑗‘𝑧)) − ((𝑘‘𝑧) − (𝑗‘𝑧))))) |
145 | 136, 123,
125, 139, 142 | offval2 7553 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑥 ∘f − 𝑘) = (𝑧 ∈ 𝐼 ↦ ((𝑥‘𝑧) − (𝑘‘𝑧)))) |
146 | 133, 144,
145 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)) = (𝑥 ∘f −
𝑘)) |
147 | 146 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))) = (𝑍‘(𝑥 ∘f − 𝑘))) |
148 | 147 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))) = ((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))) |
149 | 148 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) |
150 | 119, 149 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) ∧ 𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘}) → (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))) = ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))))) |
151 | 150 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))) = (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))))))) |
152 | 151 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ (((𝑋‘𝑗)(.r‘𝑅)(𝑌‘(𝑘 ∘f − 𝑗)))(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))))))) |
153 | 79, 116, 152 | 3eqtr2d 2784 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))) = (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))))))) |
154 | 153 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))) = (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗))))))))) |
155 | 154 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑗 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ 𝑘} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘(𝑘 ∘f − 𝑗))(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
(𝑘 ∘f
− 𝑗)))))))))) |
156 | 8 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑌 ∈ 𝐵) |
157 | 10 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → 𝑍 ∈ 𝐵) |
158 | 1, 4, 59, 5, 3, 156, 157, 50 | psrmulval 21155 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗)) = (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))))) |
159 | 158 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗))) = ((𝑋‘𝑗)(.r‘𝑅)(𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))))))) |
160 | 3 | psrbaglefi 21135 |
. . . . . . . . 9
⊢ ((𝑥 ∘f −
𝑗) ∈ 𝐷 → {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ∈ Fin) |
161 | 50, 160 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ∈ Fin) |
162 | | ovex 7308 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ↑m 𝐼) ∈ V |
163 | 3, 162 | rab2ex 5259 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ∈ V |
164 | 163 | mptex 7099 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈
V |
165 | | funmpt 6472 |
. . . . . . . . . . 11
⊢ Fun
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) |
166 | 164, 165,
113 | 3pm3.2i 1338 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈ V ∧ Fun
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∧
(0g‘𝑅)
∈ V) |
167 | 166 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈ V ∧ Fun
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∧
(0g‘𝑅)
∈ V)) |
168 | | suppssdm 7993 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) supp
(0g‘𝑅))
⊆ dom (𝑛 ∈
{ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) |
169 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) = (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) |
170 | 169 | dmmptss 6144 |
. . . . . . . . . . 11
⊢ dom
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} |
171 | 168, 170 | sstri 3930 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} |
172 | 171 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)}) |
173 | | suppssfifsupp 9143 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∈ V ∧ Fun
(𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) ∧
(0g‘𝑅)
∈ V) ∧ ({ℎ ∈
𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f −
𝑗)} ∈ Fin ∧
((𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) supp
(0g‘𝑅))
⊆ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)})) → (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) finSupp
(0g‘𝑅)) |
174 | 167, 161,
172, 173 | syl12anc 834 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))) finSupp
(0g‘𝑅)) |
175 | 2, 80, 81, 59, 23, 161, 32, 61, 174 | gsummulc2 19846 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))))) = ((𝑋‘𝑗)(.r‘𝑅)(𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))))))) |
176 | 159, 175 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥}) → ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗))) = (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))))))) |
177 | 176 | mpteq2dva 5174 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗)))) = (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛)))))))) |
178 | 177 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (𝑅 Σg (𝑛 ∈ {ℎ ∈ 𝐷 ∣ ℎ ∘r ≤ (𝑥 ∘f − 𝑗)} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌‘𝑛)(.r‘𝑅)(𝑍‘((𝑥 ∘f − 𝑗) ∘f −
𝑛))))))))) |
179 | 70, 155, 178 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗)))))) |
180 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋 × 𝑌) ∈ 𝐵) |
181 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑍 ∈ 𝐵) |
182 | 1, 4, 59, 5, 3, 180, 181, 19 | psrmulval 21155 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = (𝑅 Σg (𝑘 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r‘𝑅)(𝑍‘(𝑥 ∘f − 𝑘)))))) |
183 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
184 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑌 × 𝑍) ∈ 𝐵) |
185 | 1, 4, 59, 5, 3, 183, 184, 19 | psrmulval 21155 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑋 × (𝑌 × 𝑍))‘𝑥) = (𝑅 Σg (𝑗 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥} ↦ ((𝑋‘𝑗)(.r‘𝑅)((𝑌 × 𝑍)‘(𝑥 ∘f − 𝑗)))))) |
186 | 179, 182,
185 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = ((𝑋 × (𝑌 × 𝑍))‘𝑥)) |
187 | 13, 17, 186 | eqfnfvd 6912 |
1
⊢ (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍))) |