MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1 Structured version   Visualization version   GIF version

Theorem psrass1 21880
Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
Assertion
Ref Expression
psrass1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrass1
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrass.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psrass.b . . . 4 𝐵 = (Base‘𝑆)
5 psrass.t . . . . 5 × = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrass.x . . . . . 6 (𝜑𝑋𝐵)
8 psrass.y . . . . . 6 (𝜑𝑌𝐵)
91, 4, 5, 6, 7, 8psrmulcl 21862 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
10 psrass.z . . . . 5 (𝜑𝑍𝐵)
111, 4, 5, 6, 9, 10psrmulcl 21862 . . . 4 (𝜑 → ((𝑋 × 𝑌) × 𝑍) ∈ 𝐵)
121, 2, 3, 4, 11psrelbas 21850 . . 3 (𝜑 → ((𝑋 × 𝑌) × 𝑍):𝐷⟶(Base‘𝑅))
1312ffnd 6692 . 2 (𝜑 → ((𝑋 × 𝑌) × 𝑍) Fn 𝐷)
141, 4, 5, 6, 8, 10psrmulcl 21862 . . . . 5 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
151, 4, 5, 6, 7, 14psrmulcl 21862 . . . 4 (𝜑 → (𝑋 × (𝑌 × 𝑍)) ∈ 𝐵)
161, 2, 3, 4, 15psrelbas 21850 . . 3 (𝜑 → (𝑋 × (𝑌 × 𝑍)):𝐷⟶(Base‘𝑅))
1716ffnd 6692 . 2 (𝜑 → (𝑋 × (𝑌 × 𝑍)) Fn 𝐷)
18 eqid 2730 . . . . 5 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
19 simpr 484 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
206ringcmnd 20200 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2120adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
22 eqid 2730 . . . . . . 7 (.r𝑅) = (.r𝑅)
236ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑅 ∈ Ring)
241, 2, 3, 4, 7psrelbas 21850 . . . . . . . . . 10 (𝜑𝑋:𝐷⟶(Base‘𝑅))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
27 breq1 5113 . . . . . . . . . . . 12 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
2827elrab 3662 . . . . . . . . . . 11 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
2926, 28sylib 218 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
3029simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
3125, 30ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑗) ∈ (Base‘𝑅))
3231adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑋𝑗) ∈ (Base‘𝑅))
331, 2, 3, 4, 8psrelbas 21850 . . . . . . . . . 10 (𝜑𝑌:𝐷⟶(Base‘𝑅))
3433ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑌:𝐷⟶(Base‘𝑅))
35 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})
36 breq1 5113 . . . . . . . . . . . 12 ( = 𝑛 → (r ≤ (𝑥f𝑗) ↔ 𝑛r ≤ (𝑥f𝑗)))
3736elrab 3662 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↔ (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
3835, 37sylib 218 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
3938simpld 494 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛𝐷)
4034, 39ffvelcdmd 7060 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑌𝑛) ∈ (Base‘𝑅))
411, 2, 3, 4, 10psrelbas 21850 . . . . . . . . . 10 (𝜑𝑍:𝐷⟶(Base‘𝑅))
4241ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑍:𝐷⟶(Base‘𝑅))
43 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
443psrbagf 21834 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
4530, 44syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
4629simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
473psrbagcon 21841 . . . . . . . . . . . . . 14 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
4843, 45, 46, 47syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
4948simpld 494 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
5049adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑥f𝑗) ∈ 𝐷)
513psrbagf 21834 . . . . . . . . . . . 12 (𝑛𝐷𝑛:𝐼⟶ℕ0)
5239, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛:𝐼⟶ℕ0)
5338simprd 495 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛r ≤ (𝑥f𝑗))
543psrbagcon 21841 . . . . . . . . . . 11 (((𝑥f𝑗) ∈ 𝐷𝑛:𝐼⟶ℕ0𝑛r ≤ (𝑥f𝑗)) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5550, 52, 53, 54syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5655simpld 494 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑥f𝑗) ∘f𝑛) ∈ 𝐷)
5742, 56ffvelcdmd 7060 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) ∈ (Base‘𝑅))
582, 22, 23, 40, 57ringcld 20176 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) ∈ (Base‘𝑅))
592, 22, 23, 32, 58ringcld 20176 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
6059anasss 466 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
61 fveq2 6861 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑌𝑛) = (𝑌‘(𝑘f𝑗)))
62 oveq2 7398 . . . . . . . 8 (𝑛 = (𝑘f𝑗) → ((𝑥f𝑗) ∘f𝑛) = ((𝑥f𝑗) ∘f − (𝑘f𝑗)))
6362fveq2d 6865 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) = (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))
6461, 63oveq12d 7408 . . . . . 6 (𝑛 = (𝑘f𝑗) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))
6564oveq2d 7406 . . . . 5 (𝑛 = (𝑘f𝑗) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
663, 18, 19, 2, 21, 60, 65psrass1lem 21848 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
677ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋𝐵)
688ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
69 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
70 breq1 5113 . . . . . . . . . . . 12 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
7170elrab 3662 . . . . . . . . . . 11 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
7269, 71sylib 218 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
7372simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
741, 4, 22, 5, 3, 67, 68, 73psrmulval 21860 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋 × 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))))
7574oveq1d 7405 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
76 eqid 2730 . . . . . . . 8 (0g𝑅) = (0g𝑅)
776ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
783psrbaglefi 21842 . . . . . . . . 9 (𝑘𝐷 → {𝐷r𝑘} ∈ Fin)
7973, 78syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r𝑘} ∈ Fin)
8041ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍:𝐷⟶(Base‘𝑅))
81 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
823psrbagf 21834 . . . . . . . . . . . 12 (𝑘𝐷𝑘:𝐼⟶ℕ0)
8373, 82syl 17 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
8472simprd 495 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
853psrbagcon 21841 . . . . . . . . . . 11 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
8681, 83, 84, 85syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
8786simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
8880, 87ffvelcdmd 7060 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
896ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑅 ∈ Ring)
9024ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
91 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 ∈ {𝐷r𝑘})
92 breq1 5113 . . . . . . . . . . . . 13 ( = 𝑗 → (r𝑘𝑗r𝑘))
9392elrab 3662 . . . . . . . . . . . 12 (𝑗 ∈ {𝐷r𝑘} ↔ (𝑗𝐷𝑗r𝑘))
9491, 93sylib 218 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑗𝐷𝑗r𝑘))
9594simpld 494 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗𝐷)
9690, 95ffvelcdmd 7060 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑋𝑗) ∈ (Base‘𝑅))
9733ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
9873adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘𝐷)
9995, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗:𝐼⟶ℕ0)
10094simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗r𝑘)
1013psrbagcon 21841 . . . . . . . . . . . 12 ((𝑘𝐷𝑗:𝐼⟶ℕ0𝑗r𝑘) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
10298, 99, 100, 101syl3anc 1373 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
103102simpld 494 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
10497, 103ffvelcdmd 7060 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅))
1052, 22, 89, 96, 104ringcld 20176 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))) ∈ (Base‘𝑅))
106 eqid 2730 . . . . . . . . 9 (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))
107 fvex 6874 . . . . . . . . . 10 (0g𝑅) ∈ V
108107a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (0g𝑅) ∈ V)
109106, 79, 105, 108fsuppmptdm 9334 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) finSupp (0g𝑅))
1102, 76, 22, 77, 79, 88, 105, 109gsummulc1 20232 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
11188adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
1122, 22ringass 20169 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑋𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
11389, 96, 104, 111, 112syl13anc 1374 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
1143psrbagf 21834 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷𝑥:𝐼⟶ℕ0)
115114ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥:𝐼⟶ℕ0)
116115ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
11783adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘:𝐼⟶ℕ0)
118117ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
11999ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
120 nn0cn 12459 . . . . . . . . . . . . . . . . 17 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
121 nn0cn 12459 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
122 nn0cn 12459 . . . . . . . . . . . . . . . . 17 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
123 nnncan2 11466 . . . . . . . . . . . . . . . . 17 (((𝑥𝑧) ∈ ℂ ∧ (𝑘𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
124120, 121, 122, 123syl3an 1160 . . . . . . . . . . . . . . . 16 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
125116, 118, 119, 124syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
126125mpteq2dva 5203 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
127 psrring.i . . . . . . . . . . . . . . . 16 (𝜑𝐼𝑉)
128127ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝐼𝑉)
129 ovexd 7425 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
130 ovexd 7425 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑘𝑧) − (𝑗𝑧)) ∈ V)
131115feqmptd 6932 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
13299feqmptd 6932 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
133128, 116, 119, 131, 132offval2 7676 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
134117feqmptd 6932 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
135128, 118, 119, 134, 132offval2 7676 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑗𝑧))))
136128, 129, 130, 133, 135offval2 7676 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))))
137128, 116, 118, 131, 134offval2 7676 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑘) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
138126, 136, 1373eqtr4d 2775 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑥f𝑘))
139138fveq2d 6865 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))) = (𝑍‘(𝑥f𝑘)))
140139oveq2d 7406 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘))))
141140oveq2d 7406 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
142113, 141eqtr4d 2768 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
143142mpteq2dva 5203 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))
144143oveq2d 7406 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
14575, 110, 1443eqtr2d 2771 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
146145mpteq2dva 5203 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))))
147146oveq2d 7406 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))))
1488ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
14910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍𝐵)
1501, 4, 22, 5, 3, 148, 149, 49psrmulval 21860 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑌 × 𝑍)‘(𝑥f𝑗)) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))
151150oveq2d 7406 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
1526ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
1533psrbaglefi 21842 . . . . . . . . 9 ((𝑥f𝑗) ∈ 𝐷 → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
15449, 153syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
155 ovex 7423 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
1563, 155rab2ex 5300 . . . . . . . . . . . 12 {𝐷r ≤ (𝑥f𝑗)} ∈ V
157156mptex 7200 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V
158 funmpt 6557 . . . . . . . . . . 11 Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
159157, 158, 1073pm3.2i 1340 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V)
160159a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V))
161 suppssdm 8159 . . . . . . . . . . 11 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
162 eqid 2730 . . . . . . . . . . . 12 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
163162dmmptss 6217 . . . . . . . . . . 11 dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ⊆ {𝐷r ≤ (𝑥f𝑗)}
164161, 163sstri 3959 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)}
165164a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})
166 suppssfifsupp 9338 . . . . . . . . 9 ((((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V) ∧ ({𝐷r ≤ (𝑥f𝑗)} ∈ Fin ∧ ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
167160, 154, 165, 166syl12anc 836 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
1682, 76, 22, 152, 154, 31, 58, 167gsummulc2 20233 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
169151, 168eqtr4d 2768 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
170169mpteq2dva 5203 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗)))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))))
171170oveq2d 7406 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
17266, 147, 1713eqtr4d 2775 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
1739adantr 480 . . . 4 ((𝜑𝑥𝐷) → (𝑋 × 𝑌) ∈ 𝐵)
17410adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑍𝐵)
1751, 4, 22, 5, 3, 173, 174, 19psrmulval 21860 . . 3 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))))
1767adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑋𝐵)
17714adantr 480 . . . 4 ((𝜑𝑥𝐷) → (𝑌 × 𝑍) ∈ 𝐵)
1781, 4, 22, 5, 3, 176, 177, 19psrmulval 21860 . . 3 ((𝜑𝑥𝐷) → ((𝑋 × (𝑌 × 𝑍))‘𝑥) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
179172, 175, 1783eqtr4d 2775 . 2 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = ((𝑋 × (𝑌 × 𝑍))‘𝑥))
18013, 17, 179eqfnfvd 7009 1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cc 11073  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  CMndccmn 19717  Ringcrg 20149   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-psr 21825
This theorem is referenced by:  psrring  21886
  Copyright terms: Public domain W3C validator