MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1 Structured version   Visualization version   GIF version

Theorem psrass1 21411
Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
Assertion
Ref Expression
psrass1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrass1
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrass.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psrass.b . . . 4 𝐵 = (Base‘𝑆)
5 psrass.t . . . . 5 × = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrass.x . . . . . 6 (𝜑𝑋𝐵)
8 psrass.y . . . . . 6 (𝜑𝑌𝐵)
91, 4, 5, 6, 7, 8psrmulcl 21393 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
10 psrass.z . . . . 5 (𝜑𝑍𝐵)
111, 4, 5, 6, 9, 10psrmulcl 21393 . . . 4 (𝜑 → ((𝑋 × 𝑌) × 𝑍) ∈ 𝐵)
121, 2, 3, 4, 11psrelbas 21384 . . 3 (𝜑 → ((𝑋 × 𝑌) × 𝑍):𝐷⟶(Base‘𝑅))
1312ffnd 6674 . 2 (𝜑 → ((𝑋 × 𝑌) × 𝑍) Fn 𝐷)
141, 4, 5, 6, 8, 10psrmulcl 21393 . . . . 5 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
151, 4, 5, 6, 7, 14psrmulcl 21393 . . . 4 (𝜑 → (𝑋 × (𝑌 × 𝑍)) ∈ 𝐵)
161, 2, 3, 4, 15psrelbas 21384 . . 3 (𝜑 → (𝑋 × (𝑌 × 𝑍)):𝐷⟶(Base‘𝑅))
1716ffnd 6674 . 2 (𝜑 → (𝑋 × (𝑌 × 𝑍)) Fn 𝐷)
18 eqid 2731 . . . . 5 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
19 simpr 485 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
20 ringcmn 20017 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
216, 20syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2221adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
236ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
2423adantr 481 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑅 ∈ Ring)
251, 2, 3, 4, 7psrelbas 21384 . . . . . . . . . 10 (𝜑𝑋:𝐷⟶(Base‘𝑅))
2625ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
27 simpr 485 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
28 breq1 5113 . . . . . . . . . . . 12 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
2928elrab 3648 . . . . . . . . . . 11 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
3027, 29sylib 217 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
3130simpld 495 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
3226, 31ffvelcdmd 7041 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑗) ∈ (Base‘𝑅))
3332adantr 481 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑋𝑗) ∈ (Base‘𝑅))
341, 2, 3, 4, 8psrelbas 21384 . . . . . . . . . 10 (𝜑𝑌:𝐷⟶(Base‘𝑅))
3534ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑌:𝐷⟶(Base‘𝑅))
36 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})
37 breq1 5113 . . . . . . . . . . . 12 ( = 𝑛 → (r ≤ (𝑥f𝑗) ↔ 𝑛r ≤ (𝑥f𝑗)))
3837elrab 3648 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↔ (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
3936, 38sylib 217 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
4039simpld 495 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛𝐷)
4135, 40ffvelcdmd 7041 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑌𝑛) ∈ (Base‘𝑅))
421, 2, 3, 4, 10psrelbas 21384 . . . . . . . . . 10 (𝜑𝑍:𝐷⟶(Base‘𝑅))
4342ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑍:𝐷⟶(Base‘𝑅))
44 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
453psrbagf 21357 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
4631, 45syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
4730simprd 496 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
483psrbagcon 21369 . . . . . . . . . . . . . 14 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
4944, 46, 47, 48syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
5049simpld 495 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
5150adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑥f𝑗) ∈ 𝐷)
523psrbagf 21357 . . . . . . . . . . . 12 (𝑛𝐷𝑛:𝐼⟶ℕ0)
5340, 52syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛:𝐼⟶ℕ0)
5439simprd 496 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛r ≤ (𝑥f𝑗))
553psrbagcon 21369 . . . . . . . . . . 11 (((𝑥f𝑗) ∈ 𝐷𝑛:𝐼⟶ℕ0𝑛r ≤ (𝑥f𝑗)) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5651, 53, 54, 55syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5756simpld 495 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑥f𝑗) ∘f𝑛) ∈ 𝐷)
5843, 57ffvelcdmd 7041 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) ∈ (Base‘𝑅))
59 eqid 2731 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
602, 59ringcl 19995 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑌𝑛) ∈ (Base‘𝑅) ∧ (𝑍‘((𝑥f𝑗) ∘f𝑛)) ∈ (Base‘𝑅)) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) ∈ (Base‘𝑅))
6124, 41, 58, 60syl3anc 1371 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) ∈ (Base‘𝑅))
622, 59ringcl 19995 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑗) ∈ (Base‘𝑅) ∧ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) ∈ (Base‘𝑅)) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
6324, 33, 61, 62syl3anc 1371 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
6463anasss 467 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
65 fveq2 6847 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑌𝑛) = (𝑌‘(𝑘f𝑗)))
66 oveq2 7370 . . . . . . . 8 (𝑛 = (𝑘f𝑗) → ((𝑥f𝑗) ∘f𝑛) = ((𝑥f𝑗) ∘f − (𝑘f𝑗)))
6766fveq2d 6851 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) = (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))
6865, 67oveq12d 7380 . . . . . 6 (𝑛 = (𝑘f𝑗) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))
6968oveq2d 7378 . . . . 5 (𝑛 = (𝑘f𝑗) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
703, 18, 19, 2, 22, 64, 69psrass1lem 21382 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
717ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋𝐵)
728ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
73 simpr 485 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
74 breq1 5113 . . . . . . . . . . . 12 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
7574elrab 3648 . . . . . . . . . . 11 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
7673, 75sylib 217 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
7776simpld 495 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
781, 4, 59, 5, 3, 71, 72, 77psrmulval 21391 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋 × 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))))
7978oveq1d 7377 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
80 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
81 eqid 2731 . . . . . . . 8 (+g𝑅) = (+g𝑅)
826ad2antrr 724 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
833psrbaglefi 21371 . . . . . . . . 9 (𝑘𝐷 → {𝐷r𝑘} ∈ Fin)
8477, 83syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r𝑘} ∈ Fin)
8542ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍:𝐷⟶(Base‘𝑅))
86 simplr 767 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
873psrbagf 21357 . . . . . . . . . . . 12 (𝑘𝐷𝑘:𝐼⟶ℕ0)
8877, 87syl 17 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
8976simprd 496 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
903psrbagcon 21369 . . . . . . . . . . 11 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
9186, 88, 89, 90syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
9291simpld 495 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
9385, 92ffvelcdmd 7041 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
9482adantr 481 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑅 ∈ Ring)
9525ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
96 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 ∈ {𝐷r𝑘})
97 breq1 5113 . . . . . . . . . . . . 13 ( = 𝑗 → (r𝑘𝑗r𝑘))
9897elrab 3648 . . . . . . . . . . . 12 (𝑗 ∈ {𝐷r𝑘} ↔ (𝑗𝐷𝑗r𝑘))
9996, 98sylib 217 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑗𝐷𝑗r𝑘))
10099simpld 495 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗𝐷)
10195, 100ffvelcdmd 7041 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑋𝑗) ∈ (Base‘𝑅))
10234ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
10377adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘𝐷)
104100, 45syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗:𝐼⟶ℕ0)
10599simprd 496 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗r𝑘)
1063psrbagcon 21369 . . . . . . . . . . . 12 ((𝑘𝐷𝑗:𝐼⟶ℕ0𝑗r𝑘) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
107103, 104, 105, 106syl3anc 1371 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
108107simpld 495 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
109102, 108ffvelcdmd 7041 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅))
1102, 59ringcl 19995 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))) ∈ (Base‘𝑅))
11194, 101, 109, 110syl3anc 1371 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))) ∈ (Base‘𝑅))
112 eqid 2731 . . . . . . . . 9 (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))
113 fvex 6860 . . . . . . . . . 10 (0g𝑅) ∈ V
114113a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (0g𝑅) ∈ V)
115112, 84, 111, 114fsuppmptdm 9325 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) finSupp (0g𝑅))
1162, 80, 81, 59, 82, 84, 93, 111, 115gsummulc1 20044 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
11793adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
1182, 59ringass 19998 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑋𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
11994, 101, 109, 117, 118syl13anc 1372 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
1203psrbagf 21357 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥:𝐼⟶ℕ0)
121120adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
122121ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥:𝐼⟶ℕ0)
123122ffvelcdmda 7040 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
12488adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘:𝐼⟶ℕ0)
125124ffvelcdmda 7040 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
126104ffvelcdmda 7040 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
127 nn0cn 12432 . . . . . . . . . . . . . . . . 17 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
128 nn0cn 12432 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
129 nn0cn 12432 . . . . . . . . . . . . . . . . 17 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
130 nnncan2 11447 . . . . . . . . . . . . . . . . 17 (((𝑥𝑧) ∈ ℂ ∧ (𝑘𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
131127, 128, 129, 130syl3an 1160 . . . . . . . . . . . . . . . 16 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
132123, 125, 126, 131syl3anc 1371 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
133132mpteq2dva 5210 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
134 psrring.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
135134ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝐼𝑉)
136135adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝐼𝑉)
137 ovexd 7397 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
138 ovexd 7397 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑘𝑧) − (𝑗𝑧)) ∈ V)
139122feqmptd 6915 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
140104feqmptd 6915 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
141136, 123, 126, 139, 140offval2 7642 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
142124feqmptd 6915 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
143136, 125, 126, 142, 140offval2 7642 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑗𝑧))))
144136, 137, 138, 141, 143offval2 7642 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))))
145136, 123, 125, 139, 142offval2 7642 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑘) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
146133, 144, 1453eqtr4d 2781 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑥f𝑘))
147146fveq2d 6851 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))) = (𝑍‘(𝑥f𝑘)))
148147oveq2d 7378 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘))))
149148oveq2d 7378 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
150119, 149eqtr4d 2774 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
151150mpteq2dva 5210 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))
152151oveq2d 7378 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
15379, 116, 1523eqtr2d 2777 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
154153mpteq2dva 5210 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))))
155154oveq2d 7378 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))))
1568ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
15710ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍𝐵)
1581, 4, 59, 5, 3, 156, 157, 50psrmulval 21391 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑌 × 𝑍)‘(𝑥f𝑗)) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))
159158oveq2d 7378 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
1603psrbaglefi 21371 . . . . . . . . 9 ((𝑥f𝑗) ∈ 𝐷 → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
16150, 160syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
162 ovex 7395 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
1633, 162rab2ex 5297 . . . . . . . . . . . 12 {𝐷r ≤ (𝑥f𝑗)} ∈ V
164163mptex 7178 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V
165 funmpt 6544 . . . . . . . . . . 11 Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
166164, 165, 1133pm3.2i 1339 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V)
167166a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V))
168 suppssdm 8113 . . . . . . . . . . 11 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
169 eqid 2731 . . . . . . . . . . . 12 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
170169dmmptss 6198 . . . . . . . . . . 11 dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ⊆ {𝐷r ≤ (𝑥f𝑗)}
171168, 170sstri 3956 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)}
172171a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})
173 suppssfifsupp 9329 . . . . . . . . 9 ((((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V) ∧ ({𝐷r ≤ (𝑥f𝑗)} ∈ Fin ∧ ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
174167, 161, 172, 173syl12anc 835 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
1752, 80, 81, 59, 23, 161, 32, 61, 174gsummulc2 20045 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
176159, 175eqtr4d 2774 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
177176mpteq2dva 5210 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗)))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))))
178177oveq2d 7378 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
17970, 155, 1783eqtr4d 2781 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
1809adantr 481 . . . 4 ((𝜑𝑥𝐷) → (𝑋 × 𝑌) ∈ 𝐵)
18110adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝑍𝐵)
1821, 4, 59, 5, 3, 180, 181, 19psrmulval 21391 . . 3 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))))
1837adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝑋𝐵)
18414adantr 481 . . . 4 ((𝜑𝑥𝐷) → (𝑌 × 𝑍) ∈ 𝐵)
1851, 4, 59, 5, 3, 183, 184, 19psrmulval 21391 . . 3 ((𝜑𝑥𝐷) → ((𝑋 × (𝑌 × 𝑍))‘𝑥) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
186179, 182, 1853eqtr4d 2781 . 2 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = ((𝑋 × (𝑌 × 𝑍))‘𝑥))
18713, 17, 186eqfnfvd 6990 1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3405  Vcvv 3446  wss 3913   class class class wbr 5110  cmpt 5193  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6495  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  r cofr 7621   supp csupp 8097  m cmap 8772  Fincfn 8890   finSupp cfsupp 9312  cc 11058  cle 11199  cmin 11394  cn 12162  0cn0 12422  Basecbs 17094  +gcplusg 17147  .rcmulr 17148  0gc0g 17335   Σg cgsu 17336  CMndccmn 19576  Ringcrg 19978   mPwSer cmps 21343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-ofr 7623  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-sca 17163  df-vsca 17164  df-tset 17166  df-0g 17337  df-gsum 17338  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-submnd 18616  df-grp 18765  df-minusg 18766  df-mulg 18887  df-ghm 19020  df-cntz 19111  df-cmn 19578  df-abl 19579  df-mgp 19911  df-ur 19928  df-ring 19980  df-psr 21348
This theorem is referenced by:  psrring  21417
  Copyright terms: Public domain W3C validator