MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1 Structured version   Visualization version   GIF version

Theorem psrass1 21871
Description: Associative identity for the ring of power series. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass.z (𝜑𝑍𝐵)
Assertion
Ref Expression
psrass1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑍   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   × (𝑓)   𝑉(𝑓)

Proof of Theorem psrass1
Dummy variables 𝑥 𝑘 𝑧 𝑔 𝑗 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psrass.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psrass.b . . . 4 𝐵 = (Base‘𝑆)
5 psrass.t . . . . 5 × = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrass.x . . . . . 6 (𝜑𝑋𝐵)
8 psrass.y . . . . . 6 (𝜑𝑌𝐵)
91, 4, 5, 6, 7, 8psrmulcl 21853 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
10 psrass.z . . . . 5 (𝜑𝑍𝐵)
111, 4, 5, 6, 9, 10psrmulcl 21853 . . . 4 (𝜑 → ((𝑋 × 𝑌) × 𝑍) ∈ 𝐵)
121, 2, 3, 4, 11psrelbas 21841 . . 3 (𝜑 → ((𝑋 × 𝑌) × 𝑍):𝐷⟶(Base‘𝑅))
1312ffnd 6653 . 2 (𝜑 → ((𝑋 × 𝑌) × 𝑍) Fn 𝐷)
141, 4, 5, 6, 8, 10psrmulcl 21853 . . . . 5 (𝜑 → (𝑌 × 𝑍) ∈ 𝐵)
151, 4, 5, 6, 7, 14psrmulcl 21853 . . . 4 (𝜑 → (𝑋 × (𝑌 × 𝑍)) ∈ 𝐵)
161, 2, 3, 4, 15psrelbas 21841 . . 3 (𝜑 → (𝑋 × (𝑌 × 𝑍)):𝐷⟶(Base‘𝑅))
1716ffnd 6653 . 2 (𝜑 → (𝑋 × (𝑌 × 𝑍)) Fn 𝐷)
18 eqid 2729 . . . . 5 {𝑔𝐷𝑔r𝑥} = {𝑔𝐷𝑔r𝑥}
19 simpr 484 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝐷)
206ringcmnd 20169 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2120adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑅 ∈ CMnd)
22 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
236ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑅 ∈ Ring)
241, 2, 3, 4, 7psrelbas 21841 . . . . . . . . . 10 (𝜑𝑋:𝐷⟶(Base‘𝑅))
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋:𝐷⟶(Base‘𝑅))
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗 ∈ {𝑔𝐷𝑔r𝑥})
27 breq1 5095 . . . . . . . . . . . 12 (𝑔 = 𝑗 → (𝑔r𝑥𝑗r𝑥))
2827elrab 3648 . . . . . . . . . . 11 (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑗𝐷𝑗r𝑥))
2926, 28sylib 218 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗𝐷𝑗r𝑥))
3029simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗𝐷)
3125, 30ffvelcdmd 7019 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑋𝑗) ∈ (Base‘𝑅))
3231adantr 480 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑋𝑗) ∈ (Base‘𝑅))
331, 2, 3, 4, 8psrelbas 21841 . . . . . . . . . 10 (𝜑𝑌:𝐷⟶(Base‘𝑅))
3433ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑌:𝐷⟶(Base‘𝑅))
35 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})
36 breq1 5095 . . . . . . . . . . . 12 ( = 𝑛 → (r ≤ (𝑥f𝑗) ↔ 𝑛r ≤ (𝑥f𝑗)))
3736elrab 3648 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↔ (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
3835, 37sylib 218 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑛𝐷𝑛r ≤ (𝑥f𝑗)))
3938simpld 494 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛𝐷)
4034, 39ffvelcdmd 7019 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑌𝑛) ∈ (Base‘𝑅))
411, 2, 3, 4, 10psrelbas 21841 . . . . . . . . . 10 (𝜑𝑍:𝐷⟶(Base‘𝑅))
4241ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑍:𝐷⟶(Base‘𝑅))
43 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
443psrbagf 21825 . . . . . . . . . . . . . . 15 (𝑗𝐷𝑗:𝐼⟶ℕ0)
4530, 44syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗:𝐼⟶ℕ0)
4629simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑗r𝑥)
473psrbagcon 21832 . . . . . . . . . . . . . 14 ((𝑥𝐷𝑗:𝐼⟶ℕ0𝑗r𝑥) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
4843, 45, 46, 47syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑗) ∈ 𝐷 ∧ (𝑥f𝑗) ∘r𝑥))
4948simpld 494 . . . . . . . . . . . 12 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑗) ∈ 𝐷)
5049adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑥f𝑗) ∈ 𝐷)
513psrbagf 21825 . . . . . . . . . . . 12 (𝑛𝐷𝑛:𝐼⟶ℕ0)
5239, 51syl 17 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛:𝐼⟶ℕ0)
5338simprd 495 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → 𝑛r ≤ (𝑥f𝑗))
543psrbagcon 21832 . . . . . . . . . . 11 (((𝑥f𝑗) ∈ 𝐷𝑛:𝐼⟶ℕ0𝑛r ≤ (𝑥f𝑗)) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5550, 52, 53, 54syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (((𝑥f𝑗) ∘f𝑛) ∈ 𝐷 ∧ ((𝑥f𝑗) ∘f𝑛) ∘r ≤ (𝑥f𝑗)))
5655simpld 494 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑥f𝑗) ∘f𝑛) ∈ 𝐷)
5742, 56ffvelcdmd 7019 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) ∈ (Base‘𝑅))
582, 22, 23, 40, 57ringcld 20145 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) ∈ (Base‘𝑅))
592, 22, 23, 32, 58ringcld 20145 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)}) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
6059anasss 466 . . . . 5 (((𝜑𝑥𝐷) ∧ (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ∧ 𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)})) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ (Base‘𝑅))
61 fveq2 6822 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑌𝑛) = (𝑌‘(𝑘f𝑗)))
62 oveq2 7357 . . . . . . . 8 (𝑛 = (𝑘f𝑗) → ((𝑥f𝑗) ∘f𝑛) = ((𝑥f𝑗) ∘f − (𝑘f𝑗)))
6362fveq2d 6826 . . . . . . 7 (𝑛 = (𝑘f𝑗) → (𝑍‘((𝑥f𝑗) ∘f𝑛)) = (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))
6461, 63oveq12d 7367 . . . . . 6 (𝑛 = (𝑘f𝑗) → ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))
6564oveq2d 7365 . . . . 5 (𝑛 = (𝑘f𝑗) → ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
663, 18, 19, 2, 21, 60, 65psrass1lem 21839 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
677ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑋𝐵)
688ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
69 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘 ∈ {𝑔𝐷𝑔r𝑥})
70 breq1 5095 . . . . . . . . . . . 12 (𝑔 = 𝑘 → (𝑔r𝑥𝑘r𝑥))
7170elrab 3648 . . . . . . . . . . 11 (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↔ (𝑘𝐷𝑘r𝑥))
7269, 71sylib 218 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑘𝐷𝑘r𝑥))
7372simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘𝐷)
741, 4, 22, 5, 3, 67, 68, 73psrmulval 21851 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋 × 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))))
7574oveq1d 7364 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
76 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
776ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
783psrbaglefi 21833 . . . . . . . . 9 (𝑘𝐷 → {𝐷r𝑘} ∈ Fin)
7973, 78syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r𝑘} ∈ Fin)
8041ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍:𝐷⟶(Base‘𝑅))
81 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑥𝐷)
823psrbagf 21825 . . . . . . . . . . . 12 (𝑘𝐷𝑘:𝐼⟶ℕ0)
8373, 82syl 17 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘:𝐼⟶ℕ0)
8472simprd 495 . . . . . . . . . . 11 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑘r𝑥)
853psrbagcon 21832 . . . . . . . . . . 11 ((𝑥𝐷𝑘:𝐼⟶ℕ0𝑘r𝑥) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
8681, 83, 84, 85syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑥f𝑘) ∈ 𝐷 ∧ (𝑥f𝑘) ∘r𝑥))
8786simpld 494 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑥f𝑘) ∈ 𝐷)
8880, 87ffvelcdmd 7019 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
896ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑅 ∈ Ring)
9024ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
91 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 ∈ {𝐷r𝑘})
92 breq1 5095 . . . . . . . . . . . . 13 ( = 𝑗 → (r𝑘𝑗r𝑘))
9392elrab 3648 . . . . . . . . . . . 12 (𝑗 ∈ {𝐷r𝑘} ↔ (𝑗𝐷𝑗r𝑘))
9491, 93sylib 218 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑗𝐷𝑗r𝑘))
9594simpld 494 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗𝐷)
9690, 95ffvelcdmd 7019 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑋𝑗) ∈ (Base‘𝑅))
9733ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
9873adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘𝐷)
9995, 44syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗:𝐼⟶ℕ0)
10094simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗r𝑘)
1013psrbagcon 21832 . . . . . . . . . . . 12 ((𝑘𝐷𝑗:𝐼⟶ℕ0𝑗r𝑘) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
10298, 99, 100, 101syl3anc 1373 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑘f𝑗) ∈ 𝐷 ∧ (𝑘f𝑗) ∘r𝑘))
103102simpld 494 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
10497, 103ffvelcdmd 7019 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅))
1052, 22, 89, 96, 104ringcld 20145 . . . . . . . 8 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))) ∈ (Base‘𝑅))
106 eqid 2729 . . . . . . . . 9 (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗))))
107 fvex 6835 . . . . . . . . . 10 (0g𝑅) ∈ V
108107a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (0g𝑅) ∈ V)
109106, 79, 105, 108fsuppmptdm 9266 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))) finSupp (0g𝑅))
1102, 76, 22, 77, 79, 88, 105, 109gsummulc1 20201 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = ((𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))))(.r𝑅)(𝑍‘(𝑥f𝑘))))
11188adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))
1122, 22ringass 20138 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑋𝑗) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘f𝑗)) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑥f𝑘)) ∈ (Base‘𝑅))) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
11389, 96, 104, 111, 112syl13anc 1374 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
1143psrbagf 21825 . . . . . . . . . . . . . . . . . 18 (𝑥𝐷𝑥:𝐼⟶ℕ0)
115114ad3antlr 731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥:𝐼⟶ℕ0)
116115ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑥𝑧) ∈ ℕ0)
11783adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘:𝐼⟶ℕ0)
118117ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
11999ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
120 nn0cn 12394 . . . . . . . . . . . . . . . . 17 ((𝑥𝑧) ∈ ℕ0 → (𝑥𝑧) ∈ ℂ)
121 nn0cn 12394 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
122 nn0cn 12394 . . . . . . . . . . . . . . . . 17 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
123 nnncan2 11401 . . . . . . . . . . . . . . . . 17 (((𝑥𝑧) ∈ ℂ ∧ (𝑘𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
124120, 121, 122, 123syl3an 1160 . . . . . . . . . . . . . . . 16 (((𝑥𝑧) ∈ ℕ0 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
125116, 118, 119, 124syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧))) = ((𝑥𝑧) − (𝑘𝑧)))
126125mpteq2dva 5185 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
127 psrring.i . . . . . . . . . . . . . . . 16 (𝜑𝐼𝑉)
128127ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝐼𝑉)
129 ovexd 7384 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑥𝑧) − (𝑗𝑧)) ∈ V)
130 ovexd 7384 . . . . . . . . . . . . . . 15 (((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) ∧ 𝑧𝐼) → ((𝑘𝑧) − (𝑗𝑧)) ∈ V)
131115feqmptd 6891 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑥 = (𝑧𝐼 ↦ (𝑥𝑧)))
13299feqmptd 6891 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
133128, 116, 119, 131, 132offval2 7633 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑗) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑗𝑧))))
134117feqmptd 6891 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
135128, 118, 119, 134, 132offval2 7633 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑘f𝑗) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑗𝑧))))
136128, 129, 130, 133, 135offval2 7633 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑧𝐼 ↦ (((𝑥𝑧) − (𝑗𝑧)) − ((𝑘𝑧) − (𝑗𝑧)))))
137128, 116, 118, 131, 134offval2 7633 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑥f𝑘) = (𝑧𝐼 ↦ ((𝑥𝑧) − (𝑘𝑧))))
138126, 136, 1373eqtr4d 2774 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑥f𝑗) ∘f − (𝑘f𝑗)) = (𝑥f𝑘))
139138fveq2d 6826 . . . . . . . . . . . 12 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))) = (𝑍‘(𝑥f𝑘)))
140139oveq2d 7365 . . . . . . . . . . 11 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))) = ((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘))))
141140oveq2d 7365 . . . . . . . . . 10 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘(𝑥f𝑘)))))
142113, 141eqtr4d 2767 . . . . . . . . 9 ((((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) ∧ 𝑗 ∈ {𝐷r𝑘}) → (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))) = ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))
143142mpteq2dva 5185 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))
144143oveq2d 7365 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ (((𝑋𝑗)(.r𝑅)(𝑌‘(𝑘f𝑗)))(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
14575, 110, 1443eqtr2d 2770 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑘 ∈ {𝑔𝐷𝑔r𝑥}) → (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))) = (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))
146145mpteq2dva 5185 . . . . 5 ((𝜑𝑥𝐷) → (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘)))) = (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗)))))))))
147146oveq2d 7365 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑗 ∈ {𝐷r𝑘} ↦ ((𝑋𝑗)(.r𝑅)((𝑌‘(𝑘f𝑗))(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f − (𝑘f𝑗))))))))))
1488ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑌𝐵)
14910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑍𝐵)
1501, 4, 22, 5, 3, 148, 149, 49psrmulval 21851 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑌 × 𝑍)‘(𝑥f𝑗)) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))
151150oveq2d 7365 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
1526ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → 𝑅 ∈ Ring)
1533psrbaglefi 21833 . . . . . . . . 9 ((𝑥f𝑗) ∈ 𝐷 → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
15449, 153syl 17 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → {𝐷r ≤ (𝑥f𝑗)} ∈ Fin)
155 ovex 7382 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
1563, 155rab2ex 5281 . . . . . . . . . . . 12 {𝐷r ≤ (𝑥f𝑗)} ∈ V
157156mptex 7159 . . . . . . . . . . 11 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V
158 funmpt 6520 . . . . . . . . . . 11 Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
159157, 158, 1073pm3.2i 1340 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V)
160159a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V))
161 suppssdm 8110 . . . . . . . . . . 11 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
162 eqid 2729 . . . . . . . . . . . 12 (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) = (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))
163162dmmptss 6190 . . . . . . . . . . 11 dom (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ⊆ {𝐷r ≤ (𝑥f𝑗)}
164161, 163sstri 3945 . . . . . . . . . 10 ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)}
165164a1i 11 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})
166 suppssfifsupp 9270 . . . . . . . . 9 ((((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∈ V ∧ Fun (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) ∧ (0g𝑅) ∈ V) ∧ ({𝐷r ≤ (𝑥f𝑗)} ∈ Fin ∧ ((𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) supp (0g𝑅)) ⊆ {𝐷r ≤ (𝑥f𝑗)})) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
167160, 154, 165, 166syl12anc 836 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))) finSupp (0g𝑅))
1682, 76, 22, 152, 154, 31, 58, 167gsummulc2 20202 . . . . . . 7 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))) = ((𝑋𝑗)(.r𝑅)(𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
169151, 168eqtr4d 2767 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑗 ∈ {𝑔𝐷𝑔r𝑥}) → ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))) = (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))
170169mpteq2dva 5185 . . . . 5 ((𝜑𝑥𝐷) → (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗)))) = (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛))))))))
171170oveq2d 7365 . . . 4 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ (𝑅 Σg (𝑛 ∈ {𝐷r ≤ (𝑥f𝑗)} ↦ ((𝑋𝑗)(.r𝑅)((𝑌𝑛)(.r𝑅)(𝑍‘((𝑥f𝑗) ∘f𝑛)))))))))
17266, 147, 1713eqtr4d 2774 . . 3 ((𝜑𝑥𝐷) → (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
1739adantr 480 . . . 4 ((𝜑𝑥𝐷) → (𝑋 × 𝑌) ∈ 𝐵)
17410adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑍𝐵)
1751, 4, 22, 5, 3, 173, 174, 19psrmulval 21851 . . 3 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = (𝑅 Σg (𝑘 ∈ {𝑔𝐷𝑔r𝑥} ↦ (((𝑋 × 𝑌)‘𝑘)(.r𝑅)(𝑍‘(𝑥f𝑘))))))
1767adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑋𝐵)
17714adantr 480 . . . 4 ((𝜑𝑥𝐷) → (𝑌 × 𝑍) ∈ 𝐵)
1781, 4, 22, 5, 3, 176, 177, 19psrmulval 21851 . . 3 ((𝜑𝑥𝐷) → ((𝑋 × (𝑌 × 𝑍))‘𝑥) = (𝑅 Σg (𝑗 ∈ {𝑔𝐷𝑔r𝑥} ↦ ((𝑋𝑗)(.r𝑅)((𝑌 × 𝑍)‘(𝑥f𝑗))))))
179172, 175, 1783eqtr4d 2774 . 2 ((𝜑𝑥𝐷) → (((𝑋 × 𝑌) × 𝑍)‘𝑥) = ((𝑋 × (𝑌 × 𝑍))‘𝑥))
18013, 17, 179eqfnfvd 6968 1 (𝜑 → ((𝑋 × 𝑌) × 𝑍) = (𝑋 × (𝑌 × 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  wss 3903   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  cc 11007  cle 11150  cmin 11347  cn 12128  0cn0 12384  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  CMndccmn 19659  Ringcrg 20118   mPwSer cmps 21811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-ur 20067  df-ring 20120  df-psr 21816
This theorem is referenced by:  psrring  21877
  Copyright terms: Public domain W3C validator