MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 21870
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 21868 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 21853 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21841 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 6653 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 21841 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6653 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21851 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
23 breq1 5095 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔r𝑦𝑦r𝑦))
248adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
253psrbagf 21825 . . . . . . . . . 10 (𝑦𝐷𝑦:𝐼⟶ℕ0)
2625adantl 481 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
27 nn0re 12393 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2827leidd 11686 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2928adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
3024, 26, 29caofref 7644 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦r𝑦)
3123, 21, 30elrabd 3650 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔r𝑦})
3231snssd 4760 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔r𝑦})
3332resmptd 5991 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
3433oveq2d 7365 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
35 ringcmn 20167 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
366, 35syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3736adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
38 ovex 7382 . . . . . . 7 (ℕ0m 𝐼) ∈ V
393, 38rab2ex 5281 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
4039a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
416ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
4216ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
44 breq1 5095 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
4544elrab 3648 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
4643, 45sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
4746simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
4842, 47ffvelcdmd 7019 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
491, 2, 3, 4, 20psrelbas 21841 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5049adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
5121adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
523psrbagf 21825 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
5347, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
5446simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
553psrbagcon 21832 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5651, 53, 54, 55syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5756simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
5850, 57ffvelcdmd 7019 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅))
592, 18ringcl 20135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6041, 48, 58, 59syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6160fmpttd 7049 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
62 eldifi 4082 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
6362, 57sylan2 593 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑦f𝑧) ∈ 𝐷)
64 eqeq1 2733 . . . . . . . . . . . 12 (𝑥 = (𝑦f𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦f𝑧) = (𝐼 × {0})))
6564ifbid 4500 . . . . . . . . . . 11 (𝑥 = (𝑦f𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
6610fvexi 6836 . . . . . . . . . . . 12 1 ∈ V
679fvexi 6836 . . . . . . . . . . . 12 0 ∈ V
6866, 67ifex 4527 . . . . . . . . . . 11 if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
6965, 11, 68fvmpt 6930 . . . . . . . . . 10 ((𝑦f𝑧) ∈ 𝐷 → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
7063, 69syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
71 eldifsni 4741 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧𝑦)
7271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑧𝑦)
7372necomd 2980 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑦𝑧)
7424adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝐼𝑉)
75 nn0sscn 12389 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
76 fss 6668 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
7726, 75, 76sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦:𝐼⟶ℂ)
79 fss 6668 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8053, 75, 79sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℂ)
81 ofsubeq0 12125 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8274, 78, 80, 81syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8362, 82sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8483necon3bbid 2962 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (¬ (𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8573, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ¬ (𝑦f𝑧) = (𝐼 × {0}))
8685iffalsed 4487 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
8770, 86eqtrd 2764 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = 0 )
8887oveq2d 7365 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
892, 18, 9ringrz 20179 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9041, 48, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9162, 90sylan2 593 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9288, 91eqtrd 2764 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = 0 )
9392, 40suppss2 8133 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})
9440mptexd 7160 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V)
95 funmpt 6520 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))
9695a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
9767a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
98 snfi 8968 . . . . . . 7 {𝑦} ∈ Fin
9998a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
100 suppssfifsupp 9270 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
10194, 96, 97, 99, 93, 100syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
1022, 9, 37, 40, 61, 93, 101gsumres 19792 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
1036adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
104 ringmnd 20128 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
105103, 104syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
106 eqid 2729 . . . . . . . . . . 11 𝑦 = 𝑦
107 ofsubeq0 12125 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
10824, 77, 77, 107syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
109106, 108mpbiri 258 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦f𝑦) = (𝐼 × {0}))
110109fveq2d 6826 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = (𝑈‘(𝐼 × {0})))
111 fconstmpt 5681 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1123fczpsrbag 21828 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1138, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
114111, 113eqeltrid 2832 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
116 iftrue 4482 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 11, 66fvmpt 6930 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
118115, 117syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119110, 118eqtrd 2764 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = 1 )
120119oveq2d 7365 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12116ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1222, 18, 10ringridm 20155 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
123103, 121, 122syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
124120, 123eqtrd 2764 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = (𝑋𝑦))
125124, 121eqeltrd 2828 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅))
126 fveq2 6822 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
127 oveq2 7357 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦f𝑧) = (𝑦f𝑦))
128127fveq2d 6826 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦f𝑧)) = (𝑈‘(𝑦f𝑦)))
129126, 128oveq12d 7367 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
1302, 129gsumsn 19833 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
131105, 21, 125, 130syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13234, 102, 1313eqtr3d 2772 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13322, 132, 1243eqtrd 2768 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13415, 17, 133eqfnfvd 6968 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ccnv 5618  cres 5621  cima 5622  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  cc 11007  0cc0 11009  cle 11150  cmin 11347  cn 12128  0cn0 12384  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  CMndccmn 19659  1rcur 20066  Ringcrg 20118   mPwSer cmps 21811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-psr 21816
This theorem is referenced by:  psrring  21877  psr1  21878
  Copyright terms: Public domain W3C validator