Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . 4
β’ π = (πΌ mPwSer π
) |
2 | | eqid 2732 |
. . . 4
β’
(Baseβπ
) =
(Baseβπ
) |
3 | | psr1cl.d |
. . . 4
β’ π· = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
4 | | psr1cl.b |
. . . 4
β’ π΅ = (Baseβπ) |
5 | | psrlidm.t |
. . . . 5
β’ Β· =
(.rβπ) |
6 | | psrring.r |
. . . . 5
β’ (π β π
β Ring) |
7 | | psrlidm.x |
. . . . 5
β’ (π β π β π΅) |
8 | | psrring.i |
. . . . . 6
β’ (π β πΌ β π) |
9 | | psr1cl.z |
. . . . . 6
β’ 0 =
(0gβπ
) |
10 | | psr1cl.o |
. . . . . 6
β’ 1 =
(1rβπ
) |
11 | | psr1cl.u |
. . . . . 6
β’ π = (π₯ β π· β¦ if(π₯ = (πΌ Γ {0}), 1 , 0 )) |
12 | 1, 8, 6, 3, 9, 10,
11, 4 | psr1cl 21513 |
. . . . 5
β’ (π β π β π΅) |
13 | 1, 4, 5, 6, 7, 12 | psrmulcl 21498 |
. . . 4
β’ (π β (π Β· π) β π΅) |
14 | 1, 2, 3, 4, 13 | psrelbas 21489 |
. . 3
β’ (π β (π Β· π):π·βΆ(Baseβπ
)) |
15 | 14 | ffnd 6715 |
. 2
β’ (π β (π Β· π) Fn π·) |
16 | 1, 2, 3, 4, 7 | psrelbas 21489 |
. . 3
β’ (π β π:π·βΆ(Baseβπ
)) |
17 | 16 | ffnd 6715 |
. 2
β’ (π β π Fn π·) |
18 | | eqid 2732 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
19 | 7 | adantr 481 |
. . . 4
β’ ((π β§ π¦ β π·) β π β π΅) |
20 | 12 | adantr 481 |
. . . 4
β’ ((π β§ π¦ β π·) β π β π΅) |
21 | | simpr 485 |
. . . 4
β’ ((π β§ π¦ β π·) β π¦ β π·) |
22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 21496 |
. . 3
β’ ((π β§ π¦ β π·) β ((π Β· π)βπ¦) = (π
Ξ£g (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))))) |
23 | | breq1 5150 |
. . . . . . . 8
β’ (π = π¦ β (π βr β€ π¦ β π¦ βr β€ π¦)) |
24 | 8 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π¦ β π·) β πΌ β π) |
25 | 3 | psrbagf 21462 |
. . . . . . . . . 10
β’ (π¦ β π· β π¦:πΌβΆβ0) |
26 | 25 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π¦ β π·) β π¦:πΌβΆβ0) |
27 | | nn0re 12477 |
. . . . . . . . . . 11
β’ (π§ β β0
β π§ β
β) |
28 | 27 | leidd 11776 |
. . . . . . . . . 10
β’ (π§ β β0
β π§ β€ π§) |
29 | 28 | adantl 482 |
. . . . . . . . 9
β’ (((π β§ π¦ β π·) β§ π§ β β0) β π§ β€ π§) |
30 | 24, 26, 29 | caofref 7695 |
. . . . . . . 8
β’ ((π β§ π¦ β π·) β π¦ βr β€ π¦) |
31 | 23, 21, 30 | elrabd 3684 |
. . . . . . 7
β’ ((π β§ π¦ β π·) β π¦ β {π β π· β£ π βr β€ π¦}) |
32 | 31 | snssd 4811 |
. . . . . 6
β’ ((π β§ π¦ β π·) β {π¦} β {π β π· β£ π βr β€ π¦}) |
33 | 32 | resmptd 6038 |
. . . . 5
β’ ((π β§ π¦ β π·) β ((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) βΎ {π¦}) = (π§ β {π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))))) |
34 | 33 | oveq2d 7421 |
. . . 4
β’ ((π β§ π¦ β π·) β (π
Ξ£g ((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) βΎ {π¦})) = (π
Ξ£g (π§ β {π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))))) |
35 | | ringcmn 20092 |
. . . . . . 7
β’ (π
β Ring β π
β CMnd) |
36 | 6, 35 | syl 17 |
. . . . . 6
β’ (π β π
β CMnd) |
37 | 36 | adantr 481 |
. . . . 5
β’ ((π β§ π¦ β π·) β π
β CMnd) |
38 | | ovex 7438 |
. . . . . . 7
β’
(β0 βm πΌ) β V |
39 | 3, 38 | rab2ex 5334 |
. . . . . 6
β’ {π β π· β£ π βr β€ π¦} β V |
40 | 39 | a1i 11 |
. . . . 5
β’ ((π β§ π¦ β π·) β {π β π· β£ π βr β€ π¦} β V) |
41 | 6 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π
β Ring) |
42 | 16 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π:π·βΆ(Baseβπ
)) |
43 | | simpr 485 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π§ β {π β π· β£ π βr β€ π¦}) |
44 | | breq1 5150 |
. . . . . . . . . . 11
β’ (π = π§ β (π βr β€ π¦ β π§ βr β€ π¦)) |
45 | 44 | elrab 3682 |
. . . . . . . . . 10
β’ (π§ β {π β π· β£ π βr β€ π¦} β (π§ β π· β§ π§ βr β€ π¦)) |
46 | 43, 45 | sylib 217 |
. . . . . . . . 9
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β (π§ β π· β§ π§ βr β€ π¦)) |
47 | 46 | simpld 495 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π§ β π·) |
48 | 42, 47 | ffvelcdmd 7084 |
. . . . . . 7
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β (πβπ§) β (Baseβπ
)) |
49 | 1, 2, 3, 4, 20 | psrelbas 21489 |
. . . . . . . . 9
β’ ((π β§ π¦ β π·) β π:π·βΆ(Baseβπ
)) |
50 | 49 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π:π·βΆ(Baseβπ
)) |
51 | 21 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π¦ β π·) |
52 | 3 | psrbagf 21462 |
. . . . . . . . . . 11
β’ (π§ β π· β π§:πΌβΆβ0) |
53 | 47, 52 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π§:πΌβΆβ0) |
54 | 46 | simprd 496 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π§ βr β€ π¦) |
55 | 3 | psrbagcon 21474 |
. . . . . . . . . 10
β’ ((π¦ β π· β§ π§:πΌβΆβ0 β§ π§ βr β€ π¦) β ((π¦ βf β π§) β π· β§ (π¦ βf β π§) βr β€ π¦)) |
56 | 51, 53, 54, 55 | syl3anc 1371 |
. . . . . . . . 9
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β ((π¦ βf β π§) β π· β§ (π¦ βf β π§) βr β€ π¦)) |
57 | 56 | simpld 495 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β (π¦ βf β π§) β π·) |
58 | 50, 57 | ffvelcdmd 7084 |
. . . . . . 7
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β (πβ(π¦ βf β π§)) β (Baseβπ
)) |
59 | 2, 18 | ringcl 20066 |
. . . . . . 7
β’ ((π
β Ring β§ (πβπ§) β (Baseβπ
) β§ (πβ(π¦ βf β π§)) β (Baseβπ
)) β ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))) β (Baseβπ
)) |
60 | 41, 48, 58, 59 | syl3anc 1371 |
. . . . . 6
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))) β (Baseβπ
)) |
61 | 60 | fmpttd 7111 |
. . . . 5
β’ ((π β§ π¦ β π·) β (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))):{π β π· β£ π βr β€ π¦}βΆ(Baseβπ
)) |
62 | | eldifi 4125 |
. . . . . . . . . . 11
β’ (π§ β ({π β π· β£ π βr β€ π¦} β {π¦}) β π§ β {π β π· β£ π βr β€ π¦}) |
63 | 62, 57 | sylan2 593 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β (π¦ βf β π§) β π·) |
64 | | eqeq1 2736 |
. . . . . . . . . . . 12
β’ (π₯ = (π¦ βf β π§) β (π₯ = (πΌ Γ {0}) β (π¦ βf β π§) = (πΌ Γ {0}))) |
65 | 64 | ifbid 4550 |
. . . . . . . . . . 11
β’ (π₯ = (π¦ βf β π§) β if(π₯ = (πΌ Γ {0}), 1 , 0 ) = if((π¦ βf β π§) = (πΌ Γ {0}), 1 , 0 )) |
66 | 10 | fvexi 6902 |
. . . . . . . . . . . 12
β’ 1 β
V |
67 | 9 | fvexi 6902 |
. . . . . . . . . . . 12
β’ 0 β
V |
68 | 66, 67 | ifex 4577 |
. . . . . . . . . . 11
β’ if((π¦ βf β
π§) = (πΌ Γ {0}), 1 , 0 ) β
V |
69 | 65, 11, 68 | fvmpt 6995 |
. . . . . . . . . 10
β’ ((π¦ βf β
π§) β π· β (πβ(π¦ βf β π§)) = if((π¦ βf β π§) = (πΌ Γ {0}), 1 , 0 )) |
70 | 63, 69 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β (πβ(π¦ βf β π§)) = if((π¦ βf β π§) = (πΌ Γ {0}), 1 , 0 )) |
71 | | eldifsni 4792 |
. . . . . . . . . . . . 13
β’ (π§ β ({π β π· β£ π βr β€ π¦} β {π¦}) β π§ β π¦) |
72 | 71 | adantl 482 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β π§ β π¦) |
73 | 72 | necomd 2996 |
. . . . . . . . . . 11
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β π¦ β π§) |
74 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β πΌ β π) |
75 | | nn0sscn 12473 |
. . . . . . . . . . . . . . . 16
β’
β0 β β |
76 | | fss 6731 |
. . . . . . . . . . . . . . . 16
β’ ((π¦:πΌβΆβ0 β§
β0 β β) β π¦:πΌβΆβ) |
77 | 26, 75, 76 | sylancl 586 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π¦ β π·) β π¦:πΌβΆβ) |
78 | 77 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π¦:πΌβΆβ) |
79 | | fss 6731 |
. . . . . . . . . . . . . . 15
β’ ((π§:πΌβΆβ0 β§
β0 β β) β π§:πΌβΆβ) |
80 | 53, 75, 79 | sylancl 586 |
. . . . . . . . . . . . . 14
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β π§:πΌβΆβ) |
81 | | ofsubeq0 12205 |
. . . . . . . . . . . . . 14
β’ ((πΌ β π β§ π¦:πΌβΆβ β§ π§:πΌβΆβ) β ((π¦ βf β π§) = (πΌ Γ {0}) β π¦ = π§)) |
82 | 74, 78, 80, 81 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β ((π¦ βf β π§) = (πΌ Γ {0}) β π¦ = π§)) |
83 | 62, 82 | sylan2 593 |
. . . . . . . . . . . 12
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β ((π¦ βf β π§) = (πΌ Γ {0}) β π¦ = π§)) |
84 | 83 | necon3bbid 2978 |
. . . . . . . . . . 11
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β (Β¬ (π¦ βf β π§) = (πΌ Γ {0}) β π¦ β π§)) |
85 | 73, 84 | mpbird 256 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β Β¬ (π¦ βf β π§) = (πΌ Γ {0})) |
86 | 85 | iffalsed 4538 |
. . . . . . . . 9
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β if((π¦ βf β π§) = (πΌ Γ {0}), 1 , 0 ) = 0 ) |
87 | 70, 86 | eqtrd 2772 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β (πβ(π¦ βf β π§)) = 0 ) |
88 | 87 | oveq2d 7421 |
. . . . . . 7
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))) = ((πβπ§)(.rβπ
) 0 )) |
89 | 2, 18, 9 | ringrz 20101 |
. . . . . . . . 9
β’ ((π
β Ring β§ (πβπ§) β (Baseβπ
)) β ((πβπ§)(.rβπ
) 0 ) = 0 ) |
90 | 41, 48, 89 | syl2anc 584 |
. . . . . . . 8
β’ (((π β§ π¦ β π·) β§ π§ β {π β π· β£ π βr β€ π¦}) β ((πβπ§)(.rβπ
) 0 ) = 0 ) |
91 | 62, 90 | sylan2 593 |
. . . . . . 7
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β ((πβπ§)(.rβπ
) 0 ) = 0 ) |
92 | 88, 91 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ π¦ β π·) β§ π§ β ({π β π· β£ π βr β€ π¦} β {π¦})) β ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))) = 0 ) |
93 | 92, 40 | suppss2 8181 |
. . . . 5
β’ ((π β§ π¦ β π·) β ((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) supp 0 ) β {π¦}) |
94 | 40 | mptexd 7222 |
. . . . . 6
β’ ((π β§ π¦ β π·) β (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) β V) |
95 | | funmpt 6583 |
. . . . . . 7
β’ Fun
(π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) |
96 | 95 | a1i 11 |
. . . . . 6
β’ ((π β§ π¦ β π·) β Fun (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))))) |
97 | 67 | a1i 11 |
. . . . . 6
β’ ((π β§ π¦ β π·) β 0 β V) |
98 | | snfi 9040 |
. . . . . . 7
β’ {π¦} β Fin |
99 | 98 | a1i 11 |
. . . . . 6
β’ ((π β§ π¦ β π·) β {π¦} β Fin) |
100 | | suppssfifsupp 9374 |
. . . . . 6
β’ ((((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) β V β§ Fun (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) β§ 0 β V) β§ ({π¦} β Fin β§ ((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) supp 0 ) β {π¦})) β (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) finSupp 0 ) |
101 | 94, 96, 97, 99, 93, 100 | syl32anc 1378 |
. . . . 5
β’ ((π β§ π¦ β π·) β (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) finSupp 0 ) |
102 | 2, 9, 37, 40, 61, 93, 101 | gsumres 19775 |
. . . 4
β’ ((π β§ π¦ β π·) β (π
Ξ£g ((π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))) βΎ {π¦})) = (π
Ξ£g (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§)))))) |
103 | 6 | adantr 481 |
. . . . . 6
β’ ((π β§ π¦ β π·) β π
β Ring) |
104 | | ringmnd 20059 |
. . . . . 6
β’ (π
β Ring β π
β Mnd) |
105 | 103, 104 | syl 17 |
. . . . 5
β’ ((π β§ π¦ β π·) β π
β Mnd) |
106 | | eqid 2732 |
. . . . . . . . . . 11
β’ π¦ = π¦ |
107 | | ofsubeq0 12205 |
. . . . . . . . . . . 12
β’ ((πΌ β π β§ π¦:πΌβΆβ β§ π¦:πΌβΆβ) β ((π¦ βf β π¦) = (πΌ Γ {0}) β π¦ = π¦)) |
108 | 24, 77, 77, 107 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β π·) β ((π¦ βf β π¦) = (πΌ Γ {0}) β π¦ = π¦)) |
109 | 106, 108 | mpbiri 257 |
. . . . . . . . . 10
β’ ((π β§ π¦ β π·) β (π¦ βf β π¦) = (πΌ Γ {0})) |
110 | 109 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β§ π¦ β π·) β (πβ(π¦ βf β π¦)) = (πβ(πΌ Γ {0}))) |
111 | | fconstmpt 5736 |
. . . . . . . . . . . 12
β’ (πΌ Γ {0}) = (π€ β πΌ β¦ 0) |
112 | 3 | fczpsrbag 21467 |
. . . . . . . . . . . . 13
β’ (πΌ β π β (π€ β πΌ β¦ 0) β π·) |
113 | 8, 112 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (π€ β πΌ β¦ 0) β π·) |
114 | 111, 113 | eqeltrid 2837 |
. . . . . . . . . . 11
β’ (π β (πΌ Γ {0}) β π·) |
115 | 114 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π¦ β π·) β (πΌ Γ {0}) β π·) |
116 | | iftrue 4533 |
. . . . . . . . . . 11
β’ (π₯ = (πΌ Γ {0}) β if(π₯ = (πΌ Γ {0}), 1 , 0 ) = 1 ) |
117 | 116, 11, 66 | fvmpt 6995 |
. . . . . . . . . 10
β’ ((πΌ Γ {0}) β π· β (πβ(πΌ Γ {0})) = 1 ) |
118 | 115, 117 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π¦ β π·) β (πβ(πΌ Γ {0})) = 1 ) |
119 | 110, 118 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ π¦ β π·) β (πβ(π¦ βf β π¦)) = 1 ) |
120 | 119 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π¦ β π·) β ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦))) = ((πβπ¦)(.rβπ
) 1 )) |
121 | 16 | ffvelcdmda 7083 |
. . . . . . . 8
β’ ((π β§ π¦ β π·) β (πβπ¦) β (Baseβπ
)) |
122 | 2, 18, 10 | ringridm 20080 |
. . . . . . . 8
β’ ((π
β Ring β§ (πβπ¦) β (Baseβπ
)) β ((πβπ¦)(.rβπ
) 1 ) = (πβπ¦)) |
123 | 103, 121,
122 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π¦ β π·) β ((πβπ¦)(.rβπ
) 1 ) = (πβπ¦)) |
124 | 120, 123 | eqtrd 2772 |
. . . . . 6
β’ ((π β§ π¦ β π·) β ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦))) = (πβπ¦)) |
125 | 124, 121 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π¦ β π·) β ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦))) β (Baseβπ
)) |
126 | | fveq2 6888 |
. . . . . . 7
β’ (π§ = π¦ β (πβπ§) = (πβπ¦)) |
127 | | oveq2 7413 |
. . . . . . . 8
β’ (π§ = π¦ β (π¦ βf β π§) = (π¦ βf β π¦)) |
128 | 127 | fveq2d 6892 |
. . . . . . 7
β’ (π§ = π¦ β (πβ(π¦ βf β π§)) = (πβ(π¦ βf β π¦))) |
129 | 126, 128 | oveq12d 7423 |
. . . . . 6
β’ (π§ = π¦ β ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))) = ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦)))) |
130 | 2, 129 | gsumsn 19816 |
. . . . 5
β’ ((π
β Mnd β§ π¦ β π· β§ ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦))) β (Baseβπ
)) β (π
Ξ£g (π§ β {π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))))) = ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦)))) |
131 | 105, 21, 125, 130 | syl3anc 1371 |
. . . 4
β’ ((π β§ π¦ β π·) β (π
Ξ£g (π§ β {π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))))) = ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦)))) |
132 | 34, 102, 131 | 3eqtr3d 2780 |
. . 3
β’ ((π β§ π¦ β π·) β (π
Ξ£g (π§ β {π β π· β£ π βr β€ π¦} β¦ ((πβπ§)(.rβπ
)(πβ(π¦ βf β π§))))) = ((πβπ¦)(.rβπ
)(πβ(π¦ βf β π¦)))) |
133 | 22, 132, 124 | 3eqtrd 2776 |
. 2
β’ ((π β§ π¦ β π·) β ((π Β· π)βπ¦) = (πβπ¦)) |
134 | 15, 17, 133 | eqfnfvd 7032 |
1
β’ (π β (π Β· π) = π) |