MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 21900
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 21898 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 21883 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21871 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 6652 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 21871 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6652 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2731 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21881 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
23 breq1 5092 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔r𝑦𝑦r𝑦))
248adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
253psrbagf 21855 . . . . . . . . . 10 (𝑦𝐷𝑦:𝐼⟶ℕ0)
2625adantl 481 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
27 nn0re 12390 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2827leidd 11683 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2928adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
3024, 26, 29caofref 7641 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦r𝑦)
3123, 21, 30elrabd 3644 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔r𝑦})
3231snssd 4758 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔r𝑦})
3332resmptd 5988 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
3433oveq2d 7362 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
35 ringcmn 20200 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
366, 35syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3736adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
38 ovex 7379 . . . . . . 7 (ℕ0m 𝐼) ∈ V
393, 38rab2ex 5278 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
4039a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
416ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
4216ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
44 breq1 5092 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
4544elrab 3642 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
4643, 45sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
4746simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
4842, 47ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
491, 2, 3, 4, 20psrelbas 21871 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5049adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
5121adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
523psrbagf 21855 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
5347, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
5446simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
553psrbagcon 21862 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5651, 53, 54, 55syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5756simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
5850, 57ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅))
592, 18ringcl 20168 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6041, 48, 58, 59syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6160fmpttd 7048 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
62 eldifi 4078 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
6362, 57sylan2 593 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑦f𝑧) ∈ 𝐷)
64 eqeq1 2735 . . . . . . . . . . . 12 (𝑥 = (𝑦f𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦f𝑧) = (𝐼 × {0})))
6564ifbid 4496 . . . . . . . . . . 11 (𝑥 = (𝑦f𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
6610fvexi 6836 . . . . . . . . . . . 12 1 ∈ V
679fvexi 6836 . . . . . . . . . . . 12 0 ∈ V
6866, 67ifex 4523 . . . . . . . . . . 11 if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
6965, 11, 68fvmpt 6929 . . . . . . . . . 10 ((𝑦f𝑧) ∈ 𝐷 → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
7063, 69syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
71 eldifsni 4739 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧𝑦)
7271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑧𝑦)
7372necomd 2983 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑦𝑧)
7424adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝐼𝑉)
75 nn0sscn 12386 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
76 fss 6667 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
7726, 75, 76sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦:𝐼⟶ℂ)
79 fss 6667 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8053, 75, 79sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℂ)
81 ofsubeq0 12122 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8274, 78, 80, 81syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8362, 82sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8483necon3bbid 2965 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (¬ (𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8573, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ¬ (𝑦f𝑧) = (𝐼 × {0}))
8685iffalsed 4483 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
8770, 86eqtrd 2766 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = 0 )
8887oveq2d 7362 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
892, 18, 9ringrz 20212 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9041, 48, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9162, 90sylan2 593 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9288, 91eqtrd 2766 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = 0 )
9392, 40suppss2 8130 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})
9440mptexd 7158 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V)
95 funmpt 6519 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))
9695a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
9767a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
98 snfi 8965 . . . . . . 7 {𝑦} ∈ Fin
9998a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
100 suppssfifsupp 9264 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
10194, 96, 97, 99, 93, 100syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
1022, 9, 37, 40, 61, 93, 101gsumres 19825 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
1036adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
104 ringmnd 20161 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
105103, 104syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
106 eqid 2731 . . . . . . . . . . 11 𝑦 = 𝑦
107 ofsubeq0 12122 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
10824, 77, 77, 107syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
109106, 108mpbiri 258 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦f𝑦) = (𝐼 × {0}))
110109fveq2d 6826 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = (𝑈‘(𝐼 × {0})))
111 fconstmpt 5676 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1123fczpsrbag 21858 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1138, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
114111, 113eqeltrid 2835 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
116 iftrue 4478 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 11, 66fvmpt 6929 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
118115, 117syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119110, 118eqtrd 2766 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = 1 )
120119oveq2d 7362 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12116ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1222, 18, 10ringridm 20188 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
123103, 121, 122syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
124120, 123eqtrd 2766 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = (𝑋𝑦))
125124, 121eqeltrd 2831 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅))
126 fveq2 6822 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
127 oveq2 7354 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦f𝑧) = (𝑦f𝑦))
128127fveq2d 6826 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦f𝑧)) = (𝑈‘(𝑦f𝑦)))
129126, 128oveq12d 7364 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
1302, 129gsumsn 19866 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
131105, 21, 125, 130syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13234, 102, 1313eqtr3d 2774 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13322, 132, 1243eqtrd 2770 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13415, 17, 133eqfnfvd 6967 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  cres 5616  cima 5617  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  r cofr 7609   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  cc 11004  0cc0 11006  cle 11147  cmin 11344  cn 12125  0cn0 12381  Basecbs 17120  .rcmulr 17162  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  CMndccmn 19692  1rcur 20099  Ringcrg 20151   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-psr 21846
This theorem is referenced by:  psrring  21907  psr1  21908
  Copyright terms: Public domain W3C validator