MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 21983
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 21981 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 21966 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21954 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 6737 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 21954 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6737 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21964 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
23 breq1 5146 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔r𝑦𝑦r𝑦))
248adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
253psrbagf 21938 . . . . . . . . . 10 (𝑦𝐷𝑦:𝐼⟶ℕ0)
2625adantl 481 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
27 nn0re 12535 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2827leidd 11829 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2928adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
3024, 26, 29caofref 7728 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦r𝑦)
3123, 21, 30elrabd 3694 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔r𝑦})
3231snssd 4809 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔r𝑦})
3332resmptd 6058 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
3433oveq2d 7447 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
35 ringcmn 20279 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
366, 35syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3736adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
38 ovex 7464 . . . . . . 7 (ℕ0m 𝐼) ∈ V
393, 38rab2ex 5342 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
4039a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
416ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
4216ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
44 breq1 5146 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
4544elrab 3692 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
4643, 45sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
4746simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
4842, 47ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
491, 2, 3, 4, 20psrelbas 21954 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5049adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
5121adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
523psrbagf 21938 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
5347, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
5446simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
553psrbagcon 21945 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5651, 53, 54, 55syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5756simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
5850, 57ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅))
592, 18ringcl 20247 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6041, 48, 58, 59syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6160fmpttd 7135 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
62 eldifi 4131 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
6362, 57sylan2 593 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑦f𝑧) ∈ 𝐷)
64 eqeq1 2741 . . . . . . . . . . . 12 (𝑥 = (𝑦f𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦f𝑧) = (𝐼 × {0})))
6564ifbid 4549 . . . . . . . . . . 11 (𝑥 = (𝑦f𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
6610fvexi 6920 . . . . . . . . . . . 12 1 ∈ V
679fvexi 6920 . . . . . . . . . . . 12 0 ∈ V
6866, 67ifex 4576 . . . . . . . . . . 11 if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
6965, 11, 68fvmpt 7016 . . . . . . . . . 10 ((𝑦f𝑧) ∈ 𝐷 → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
7063, 69syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
71 eldifsni 4790 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧𝑦)
7271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑧𝑦)
7372necomd 2996 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑦𝑧)
7424adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝐼𝑉)
75 nn0sscn 12531 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
76 fss 6752 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
7726, 75, 76sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦:𝐼⟶ℂ)
79 fss 6752 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8053, 75, 79sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℂ)
81 ofsubeq0 12263 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8274, 78, 80, 81syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8362, 82sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8483necon3bbid 2978 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (¬ (𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8573, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ¬ (𝑦f𝑧) = (𝐼 × {0}))
8685iffalsed 4536 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
8770, 86eqtrd 2777 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = 0 )
8887oveq2d 7447 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
892, 18, 9ringrz 20291 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9041, 48, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9162, 90sylan2 593 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9288, 91eqtrd 2777 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = 0 )
9392, 40suppss2 8225 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})
9440mptexd 7244 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V)
95 funmpt 6604 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))
9695a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
9767a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
98 snfi 9083 . . . . . . 7 {𝑦} ∈ Fin
9998a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
100 suppssfifsupp 9420 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
10194, 96, 97, 99, 93, 100syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
1022, 9, 37, 40, 61, 93, 101gsumres 19931 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
1036adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
104 ringmnd 20240 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
105103, 104syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
106 eqid 2737 . . . . . . . . . . 11 𝑦 = 𝑦
107 ofsubeq0 12263 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
10824, 77, 77, 107syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
109106, 108mpbiri 258 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦f𝑦) = (𝐼 × {0}))
110109fveq2d 6910 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = (𝑈‘(𝐼 × {0})))
111 fconstmpt 5747 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1123fczpsrbag 21941 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1138, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
114111, 113eqeltrid 2845 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
116 iftrue 4531 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 11, 66fvmpt 7016 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
118115, 117syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119110, 118eqtrd 2777 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = 1 )
120119oveq2d 7447 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12116ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1222, 18, 10ringridm 20267 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
123103, 121, 122syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
124120, 123eqtrd 2777 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = (𝑋𝑦))
125124, 121eqeltrd 2841 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅))
126 fveq2 6906 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
127 oveq2 7439 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦f𝑧) = (𝑦f𝑦))
128127fveq2d 6910 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦f𝑧)) = (𝑈‘(𝑦f𝑦)))
129126, 128oveq12d 7449 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
1302, 129gsumsn 19972 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
131105, 21, 125, 130syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13234, 102, 1313eqtr3d 2785 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13322, 132, 1243eqtrd 2781 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13415, 17, 133eqfnfvd 7054 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  cres 5687  cima 5688  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cc 11153  0cc0 11155  cle 11296  cmin 11492  cn 12266  0cn0 12526  Basecbs 17247  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  CMndccmn 19798  1rcur 20178  Ringcrg 20230   mPwSer cmps 21924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-psr 21929
This theorem is referenced by:  psrring  21990  psr1  21991
  Copyright terms: Public domain W3C validator