MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 22001
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 21999 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 21984 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21972 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 6738 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 21972 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6738 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2735 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21982 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
23 breq1 5151 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔r𝑦𝑦r𝑦))
248adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
253psrbagf 21956 . . . . . . . . . 10 (𝑦𝐷𝑦:𝐼⟶ℕ0)
2625adantl 481 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
27 nn0re 12533 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2827leidd 11827 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2928adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
3024, 26, 29caofref 7728 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦r𝑦)
3123, 21, 30elrabd 3697 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔r𝑦})
3231snssd 4814 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔r𝑦})
3332resmptd 6060 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
3433oveq2d 7447 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
35 ringcmn 20296 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
366, 35syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3736adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
38 ovex 7464 . . . . . . 7 (ℕ0m 𝐼) ∈ V
393, 38rab2ex 5348 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
4039a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
416ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
4216ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
44 breq1 5151 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
4544elrab 3695 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
4643, 45sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
4746simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
4842, 47ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
491, 2, 3, 4, 20psrelbas 21972 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5049adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
5121adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
523psrbagf 21956 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
5347, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
5446simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
553psrbagcon 21963 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5651, 53, 54, 55syl3anc 1370 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5756simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
5850, 57ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅))
592, 18ringcl 20268 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6041, 48, 58, 59syl3anc 1370 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6160fmpttd 7135 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
62 eldifi 4141 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
6362, 57sylan2 593 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑦f𝑧) ∈ 𝐷)
64 eqeq1 2739 . . . . . . . . . . . 12 (𝑥 = (𝑦f𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦f𝑧) = (𝐼 × {0})))
6564ifbid 4554 . . . . . . . . . . 11 (𝑥 = (𝑦f𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
6610fvexi 6921 . . . . . . . . . . . 12 1 ∈ V
679fvexi 6921 . . . . . . . . . . . 12 0 ∈ V
6866, 67ifex 4581 . . . . . . . . . . 11 if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
6965, 11, 68fvmpt 7016 . . . . . . . . . 10 ((𝑦f𝑧) ∈ 𝐷 → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
7063, 69syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
71 eldifsni 4795 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧𝑦)
7271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑧𝑦)
7372necomd 2994 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑦𝑧)
7424adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝐼𝑉)
75 nn0sscn 12529 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
76 fss 6753 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
7726, 75, 76sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦:𝐼⟶ℂ)
79 fss 6753 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8053, 75, 79sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℂ)
81 ofsubeq0 12261 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8274, 78, 80, 81syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8362, 82sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8483necon3bbid 2976 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (¬ (𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8573, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ¬ (𝑦f𝑧) = (𝐼 × {0}))
8685iffalsed 4542 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
8770, 86eqtrd 2775 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = 0 )
8887oveq2d 7447 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
892, 18, 9ringrz 20308 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9041, 48, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9162, 90sylan2 593 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9288, 91eqtrd 2775 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = 0 )
9392, 40suppss2 8224 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})
9440mptexd 7244 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V)
95 funmpt 6606 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))
9695a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
9767a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
98 snfi 9082 . . . . . . 7 {𝑦} ∈ Fin
9998a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
100 suppssfifsupp 9418 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
10194, 96, 97, 99, 93, 100syl32anc 1377 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
1022, 9, 37, 40, 61, 93, 101gsumres 19946 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
1036adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
104 ringmnd 20261 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
105103, 104syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
106 eqid 2735 . . . . . . . . . . 11 𝑦 = 𝑦
107 ofsubeq0 12261 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
10824, 77, 77, 107syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
109106, 108mpbiri 258 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦f𝑦) = (𝐼 × {0}))
110109fveq2d 6911 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = (𝑈‘(𝐼 × {0})))
111 fconstmpt 5751 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1123fczpsrbag 21959 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1138, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
114111, 113eqeltrid 2843 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
116 iftrue 4537 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 11, 66fvmpt 7016 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
118115, 117syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119110, 118eqtrd 2775 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = 1 )
120119oveq2d 7447 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12116ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1222, 18, 10ringridm 20284 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
123103, 121, 122syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
124120, 123eqtrd 2775 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = (𝑋𝑦))
125124, 121eqeltrd 2839 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅))
126 fveq2 6907 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
127 oveq2 7439 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦f𝑧) = (𝑦f𝑦))
128127fveq2d 6911 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦f𝑧)) = (𝑈‘(𝑦f𝑦)))
129126, 128oveq12d 7449 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
1302, 129gsumsn 19987 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
131105, 21, 125, 130syl3anc 1370 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13234, 102, 1313eqtr3d 2783 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13322, 132, 1243eqtrd 2779 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13415, 17, 133eqfnfvd 7054 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231   × cxp 5687  ccnv 5688  cres 5691  cima 5692  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  r cofr 7696   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  cc 11151  0cc0 11153  cle 11294  cmin 11490  cn 12264  0cn0 12524  Basecbs 17245  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  CMndccmn 19813  1rcur 20199  Ringcrg 20251   mPwSer cmps 21942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-psr 21947
This theorem is referenced by:  psrring  22008  psr1  22009
  Copyright terms: Public domain W3C validator