MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrridm Structured version   Visualization version   GIF version

Theorem psrridm 21928
Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrridm (𝜑 → (𝑋 · 𝑈) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrridm
Dummy variables 𝑦 𝑧 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
8 psrring.i . . . . . 6 (𝜑𝐼𝑉)
9 psr1cl.z . . . . . 6 0 = (0g𝑅)
10 psr1cl.o . . . . . 6 1 = (1r𝑅)
11 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
121, 8, 6, 3, 9, 10, 11, 4psr1cl 21926 . . . . 5 (𝜑𝑈𝐵)
131, 4, 5, 6, 7, 12psrmulcl 21911 . . . 4 (𝜑 → (𝑋 · 𝑈) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21899 . . 3 (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅))
1514ffnd 6712 . 2 (𝜑 → (𝑋 · 𝑈) Fn 𝐷)
161, 2, 3, 4, 7psrelbas 21899 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6712 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
197adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21909 . . 3 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
23 breq1 5127 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔r𝑦𝑦r𝑦))
248adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝐼𝑉)
253psrbagf 21883 . . . . . . . . . 10 (𝑦𝐷𝑦:𝐼⟶ℕ0)
2625adantl 481 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
27 nn0re 12515 . . . . . . . . . . 11 (𝑧 ∈ ℕ0𝑧 ∈ ℝ)
2827leidd 11808 . . . . . . . . . 10 (𝑧 ∈ ℕ0𝑧𝑧)
2928adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧𝑧)
3024, 26, 29caofref 7707 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦r𝑦)
3123, 21, 30elrabd 3678 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ∈ {𝑔𝐷𝑔r𝑦})
3231snssd 4790 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ⊆ {𝑔𝐷𝑔r𝑦})
3332resmptd 6032 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
3433oveq2d 7426 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
35 ringcmn 20247 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
366, 35syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
3736adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
38 ovex 7443 . . . . . . 7 (ℕ0m 𝐼) ∈ V
393, 38rab2ex 5317 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
4039a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
416ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
4216ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
44 breq1 5127 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
4544elrab 3676 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
4643, 45sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
4746simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
4842, 47ffvelcdmd 7080 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋𝑧) ∈ (Base‘𝑅))
491, 2, 3, 4, 20psrelbas 21899 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
5049adantr 480 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑈:𝐷⟶(Base‘𝑅))
5121adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
523psrbagf 21883 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
5347, 52syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
5446simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
553psrbagcon 21890 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5651, 53, 54, 55syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
5756simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
5850, 57ffvelcdmd 7080 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅))
592, 18ringcl 20215 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6041, 48, 58, 59syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) ∈ (Base‘𝑅))
6160fmpttd 7110 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
62 eldifi 4111 . . . . . . . . . . 11 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
6362, 57sylan2 593 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑦f𝑧) ∈ 𝐷)
64 eqeq1 2740 . . . . . . . . . . . 12 (𝑥 = (𝑦f𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦f𝑧) = (𝐼 × {0})))
6564ifbid 4529 . . . . . . . . . . 11 (𝑥 = (𝑦f𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
6610fvexi 6895 . . . . . . . . . . . 12 1 ∈ V
679fvexi 6895 . . . . . . . . . . . 12 0 ∈ V
6866, 67ifex 4556 . . . . . . . . . . 11 if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) ∈ V
6965, 11, 68fvmpt 6991 . . . . . . . . . 10 ((𝑦f𝑧) ∈ 𝐷 → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
7063, 69syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ))
71 eldifsni 4771 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦}) → 𝑧𝑦)
7271adantl 481 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑧𝑦)
7372necomd 2988 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → 𝑦𝑧)
7424adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝐼𝑉)
75 nn0sscn 12511 . . . . . . . . . . . . . . . 16 0 ⊆ ℂ
76 fss 6727 . . . . . . . . . . . . . . . 16 ((𝑦:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ)
7726, 75, 76sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℂ)
7877adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦:𝐼⟶ℂ)
79 fss 6727 . . . . . . . . . . . . . . 15 ((𝑧:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ)
8053, 75, 79sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℂ)
81 ofsubeq0 12242 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8274, 78, 80, 81syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8362, 82sylan2 593 . . . . . . . . . . . 12 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧))
8483necon3bbid 2970 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (¬ (𝑦f𝑧) = (𝐼 × {0}) ↔ 𝑦𝑧))
8573, 84mpbird 257 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ¬ (𝑦f𝑧) = (𝐼 × {0}))
8685iffalsed 4516 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → if((𝑦f𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 )
8770, 86eqtrd 2771 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → (𝑈‘(𝑦f𝑧)) = 0 )
8887oveq2d 7426 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑧)(.r𝑅) 0 ))
892, 18, 9ringrz 20259 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9041, 48, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9162, 90sylan2 593 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
9288, 91eqtrd 2771 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {𝑦})) → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = 0 )
9392, 40suppss2 8204 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})
9440mptexd 7221 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V)
95 funmpt 6579 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))
9695a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))))
9767a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
98 snfi 9062 . . . . . . 7 {𝑦} ∈ Fin
9998a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {𝑦} ∈ Fin)
100 suppssfifsupp 9397 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
10194, 96, 97, 99, 93, 100syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) finSupp 0 )
1022, 9, 37, 40, 61, 93, 101gsumres 19899 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))))
1036adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
104 ringmnd 20208 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
105103, 104syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
106 eqid 2736 . . . . . . . . . . 11 𝑦 = 𝑦
107 ofsubeq0 12242 . . . . . . . . . . . 12 ((𝐼𝑉𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
10824, 77, 77, 107syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → ((𝑦f𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦))
109106, 108mpbiri 258 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝑦f𝑦) = (𝐼 × {0}))
110109fveq2d 6885 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = (𝑈‘(𝐼 × {0})))
111 fconstmpt 5721 . . . . . . . . . . . 12 (𝐼 × {0}) = (𝑤𝐼 ↦ 0)
1123fczpsrbag 21886 . . . . . . . . . . . . 13 (𝐼𝑉 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
1138, 112syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤𝐼 ↦ 0) ∈ 𝐷)
114111, 113eqeltrid 2839 . . . . . . . . . . 11 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
115114adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
116 iftrue 4511 . . . . . . . . . . 11 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 11, 66fvmpt 6991 . . . . . . . . . 10 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
118115, 117syl 17 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119110, 118eqtrd 2771 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝑦f𝑦)) = 1 )
120119oveq2d 7426 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = ((𝑋𝑦)(.r𝑅) 1 ))
12116ffvelcdmda 7079 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1222, 18, 10ringridm 20235 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
123103, 121, 122syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅) 1 ) = (𝑋𝑦))
124120, 123eqtrd 2771 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) = (𝑋𝑦))
125124, 121eqeltrd 2835 . . . . 5 ((𝜑𝑦𝐷) → ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅))
126 fveq2 6881 . . . . . . 7 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
127 oveq2 7418 . . . . . . . 8 (𝑧 = 𝑦 → (𝑦f𝑧) = (𝑦f𝑦))
128127fveq2d 6885 . . . . . . 7 (𝑧 = 𝑦 → (𝑈‘(𝑦f𝑧)) = (𝑈‘(𝑦f𝑦)))
129126, 128oveq12d 7428 . . . . . 6 (𝑧 = 𝑦 → ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
1302, 129gsumsn 19940 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑦𝐷 ∧ ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
131105, 21, 125, 130syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13234, 102, 1313eqtr3d 2779 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑋𝑧)(.r𝑅)(𝑈‘(𝑦f𝑧))))) = ((𝑋𝑦)(.r𝑅)(𝑈‘(𝑦f𝑦))))
13322, 132, 1243eqtrd 2775 . 2 ((𝜑𝑦𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋𝑦))
13415, 17, 133eqfnfvd 7029 1 (𝜑 → (𝑋 · 𝑈) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  {crab 3420  Vcvv 3464  cdif 3928  wss 3931  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  ccnv 5658  cres 5661  cima 5662  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  r cofr 7675   supp csupp 8164  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378  cc 11132  0cc0 11134  cle 11275  cmin 11471  cn 12245  0cn0 12506  Basecbs 17233  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  CMndccmn 19766  1rcur 20146  Ringcrg 20198   mPwSer cmps 21869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-psr 21874
This theorem is referenced by:  psrring  21935  psr1  21936
  Copyright terms: Public domain W3C validator