Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | psr1cl.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
4 | | psr1cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
5 | | psrlidm.t |
. . . . 5
⊢ · =
(.r‘𝑆) |
6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | psrlidm.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
8 | | psrring.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
9 | | psr1cl.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
10 | | psr1cl.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
11 | | psr1cl.u |
. . . . . 6
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
12 | 1, 8, 6, 3, 9, 10,
11, 4 | psr1cl 21171 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
13 | 1, 4, 5, 6, 7, 12 | psrmulcl 21157 |
. . . 4
⊢ (𝜑 → (𝑋 · 𝑈) ∈ 𝐵) |
14 | 1, 2, 3, 4, 13 | psrelbas 21148 |
. . 3
⊢ (𝜑 → (𝑋 · 𝑈):𝐷⟶(Base‘𝑅)) |
15 | 14 | ffnd 6601 |
. 2
⊢ (𝜑 → (𝑋 · 𝑈) Fn 𝐷) |
16 | 1, 2, 3, 4, 7 | psrelbas 21148 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
17 | 16 | ffnd 6601 |
. 2
⊢ (𝜑 → 𝑋 Fn 𝐷) |
18 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
19 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
20 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈 ∈ 𝐵) |
21 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 21155 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))))) |
23 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑔 = 𝑦 → (𝑔 ∘r ≤ 𝑦 ↔ 𝑦 ∘r ≤ 𝑦)) |
24 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
25 | 3 | psrbagf 21121 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0) |
26 | 25 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) |
27 | | nn0re 12242 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℝ) |
28 | 27 | leidd 11541 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ≤ 𝑧) |
29 | 28 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ℕ0) → 𝑧 ≤ 𝑧) |
30 | 24, 26, 29 | caofref 7562 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∘r ≤ 𝑦) |
31 | 23, 21, 30 | elrabd 3626 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
32 | 31 | snssd 4742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑦} ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
33 | 32 | resmptd 5948 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ↾ {𝑦}) = (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))))) |
34 | 33 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))))) |
35 | | ringcmn 19820 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
36 | 6, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
37 | 36 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ CMnd) |
38 | | ovex 7308 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
39 | 3, 38 | rab2ex 5259 |
. . . . . 6
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V |
40 | 39 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V) |
41 | 6 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑅 ∈ Ring) |
42 | 16 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑋:𝐷⟶(Base‘𝑅)) |
43 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
44 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑧 → (𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦)) |
45 | 44 | elrab 3624 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↔ (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
46 | 43, 45 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
47 | 46 | simpld 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ 𝐷) |
48 | 42, 47 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑋‘𝑧) ∈ (Base‘𝑅)) |
49 | 1, 2, 3, 4, 20 | psrelbas 21148 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈:𝐷⟶(Base‘𝑅)) |
50 | 49 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑈:𝐷⟶(Base‘𝑅)) |
51 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑦 ∈ 𝐷) |
52 | 3 | psrbagf 21121 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) |
53 | 47, 52 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧:𝐼⟶ℕ0) |
54 | 46 | simprd 496 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∘r ≤ 𝑦) |
55 | 3 | psrbagcon 21133 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧:𝐼⟶ℕ0 ∧ 𝑧 ∘r ≤ 𝑦) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
56 | 51, 53, 54, 55 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
57 | 56 | simpld 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑦 ∘f − 𝑧) ∈ 𝐷) |
58 | 50, 57 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑈‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) |
59 | 2, 18 | ringcl 19800 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅) ∧ (𝑈‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
60 | 41, 48, 58, 59 | syl3anc 1370 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
61 | 60 | fmpttd 6989 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}⟶(Base‘𝑅)) |
62 | | eldifi 4061 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
63 | 62, 57 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → (𝑦 ∘f − 𝑧) ∈ 𝐷) |
64 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 ∘f − 𝑧) → (𝑥 = (𝐼 × {0}) ↔ (𝑦 ∘f − 𝑧) = (𝐼 × {0}))) |
65 | 64 | ifbid 4482 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ∘f − 𝑧) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if((𝑦 ∘f − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
66 | 10 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
67 | 9 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
68 | 66, 67 | ifex 4509 |
. . . . . . . . . . 11
⊢ if((𝑦 ∘f −
𝑧) = (𝐼 × {0}), 1 , 0 ) ∈
V |
69 | 65, 11, 68 | fvmpt 6875 |
. . . . . . . . . 10
⊢ ((𝑦 ∘f −
𝑧) ∈ 𝐷 → (𝑈‘(𝑦 ∘f − 𝑧)) = if((𝑦 ∘f − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
70 | 63, 69 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → (𝑈‘(𝑦 ∘f − 𝑧)) = if((𝑦 ∘f − 𝑧) = (𝐼 × {0}), 1 , 0 )) |
71 | | eldifsni 4723 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦}) → 𝑧 ≠ 𝑦) |
72 | 71 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → 𝑧 ≠ 𝑦) |
73 | 72 | necomd 2999 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → 𝑦 ≠ 𝑧) |
74 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝐼 ∈ 𝑉) |
75 | | nn0sscn 12238 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ⊆ ℂ |
76 | | fss 6617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦:𝐼⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → 𝑦:𝐼⟶ℂ) |
77 | 26, 75, 76 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℂ) |
78 | 77 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑦:𝐼⟶ℂ) |
79 | | fss 6617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧:𝐼⟶ℕ0 ∧
ℕ0 ⊆ ℂ) → 𝑧:𝐼⟶ℂ) |
80 | 53, 75, 79 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧:𝐼⟶ℂ) |
81 | | ofsubeq0 11970 |
. . . . . . . . . . . . . 14
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦:𝐼⟶ℂ ∧ 𝑧:𝐼⟶ℂ) → ((𝑦 ∘f − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
82 | 74, 78, 80, 81 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑦 ∘f − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
83 | 62, 82 | sylan2 593 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → ((𝑦 ∘f − 𝑧) = (𝐼 × {0}) ↔ 𝑦 = 𝑧)) |
84 | 83 | necon3bbid 2981 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → (¬ (𝑦 ∘f − 𝑧) = (𝐼 × {0}) ↔ 𝑦 ≠ 𝑧)) |
85 | 73, 84 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → ¬ (𝑦 ∘f − 𝑧) = (𝐼 × {0})) |
86 | 85 | iffalsed 4470 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → if((𝑦 ∘f − 𝑧) = (𝐼 × {0}), 1 , 0 ) = 0 ) |
87 | 70, 86 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → (𝑈‘(𝑦 ∘f − 𝑧)) = 0 ) |
88 | 87 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))) = ((𝑋‘𝑧)(.r‘𝑅) 0 )) |
89 | 2, 18, 9 | ringrz 19827 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑧) ∈ (Base‘𝑅)) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
90 | 41, 48, 89 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
91 | 62, 90 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅) 0 ) = 0 ) |
92 | 88, 91 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {𝑦})) → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))) = 0 ) |
93 | 92, 40 | suppss2 8016 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {𝑦}) |
94 | 40 | mptexd 7100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ∈ V) |
95 | | funmpt 6472 |
. . . . . . 7
⊢ Fun
(𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) |
96 | 95 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))))) |
97 | 67 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈ V) |
98 | | snfi 8834 |
. . . . . . 7
⊢ {𝑦} ∈ Fin |
99 | 98 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑦} ∈ Fin) |
100 | | suppssfifsupp 9143 |
. . . . . 6
⊢ ((((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ∧ 0 ∈ V) ∧ ({𝑦} ∈ Fin ∧ ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {𝑦})) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
101 | 94, 96, 97, 99, 93, 100 | syl32anc 1377 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
102 | 2, 9, 37, 40, 61, 93, 101 | gsumres 19514 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))) ↾ {𝑦})) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧)))))) |
103 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Ring) |
104 | | ringmnd 19793 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
105 | 103, 104 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Mnd) |
106 | | eqid 2738 |
. . . . . . . . . . 11
⊢ 𝑦 = 𝑦 |
107 | | ofsubeq0 11970 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑦:𝐼⟶ℂ ∧ 𝑦:𝐼⟶ℂ) → ((𝑦 ∘f − 𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦)) |
108 | 24, 77, 77, 107 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑦 ∘f − 𝑦) = (𝐼 × {0}) ↔ 𝑦 = 𝑦)) |
109 | 106, 108 | mpbiri 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∘f − 𝑦) = (𝐼 × {0})) |
110 | 109 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝑦 ∘f − 𝑦)) = (𝑈‘(𝐼 × {0}))) |
111 | | fconstmpt 5649 |
. . . . . . . . . . . 12
⊢ (𝐼 × {0}) = (𝑤 ∈ 𝐼 ↦ 0) |
112 | 3 | fczpsrbag 21126 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝑉 → (𝑤 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
113 | 8, 112 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
114 | 111, 113 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) |
115 | 114 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ 𝐷) |
116 | | iftrue 4465 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 ) |
117 | 116, 11, 66 | fvmpt 6875 |
. . . . . . . . . 10
⊢ ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 ) |
118 | 115, 117 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝐼 × {0})) = 1 ) |
119 | 110, 118 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝑦 ∘f − 𝑦)) = 1 ) |
120 | 119 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦))) = ((𝑋‘𝑦)(.r‘𝑅) 1 )) |
121 | 16 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) |
122 | 2, 18, 10 | ringridm 19811 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑦) ∈ (Base‘𝑅)) → ((𝑋‘𝑦)(.r‘𝑅) 1 ) = (𝑋‘𝑦)) |
123 | 103, 121,
122 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅) 1 ) = (𝑋‘𝑦)) |
124 | 120, 123 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦))) = (𝑋‘𝑦)) |
125 | 124, 121 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦))) ∈ (Base‘𝑅)) |
126 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑋‘𝑧) = (𝑋‘𝑦)) |
127 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑦 ∘f − 𝑧) = (𝑦 ∘f − 𝑦)) |
128 | 127 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑈‘(𝑦 ∘f − 𝑧)) = (𝑈‘(𝑦 ∘f − 𝑦))) |
129 | 126, 128 | oveq12d 7293 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦)))) |
130 | 2, 129 | gsumsn 19555 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ 𝐷 ∧ ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦)))) |
131 | 105, 21, 125, 130 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦)))) |
132 | 34, 102, 131 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑋‘𝑧)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑧))))) = ((𝑋‘𝑦)(.r‘𝑅)(𝑈‘(𝑦 ∘f − 𝑦)))) |
133 | 22, 132, 124 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑋 · 𝑈)‘𝑦) = (𝑋‘𝑦)) |
134 | 15, 17, 133 | eqfnfvd 6912 |
1
⊢ (𝜑 → (𝑋 · 𝑈) = 𝑋) |