MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiagOLD Structured version   Visualization version   GIF version

Theorem gsumbagdiagOLD 20752
Description: Obsolete version of gsumbagdiag 20755 as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiagOLD.i (𝜑𝐼𝑉)
gsumbagdiagOLD.f (𝜑𝐹𝐷)
gsumbagdiagOLD.b 𝐵 = (Base‘𝐺)
gsumbagdiagOLD.g (𝜑𝐺 ∈ CMnd)
gsumbagdiagOLD.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiagOLD (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑥,𝑦   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiagOLD
StepHypRef Expression
1 gsumbagdiagOLD.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2738 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiagOLD.g . 2 (𝜑𝐺 ∈ CMnd)
4 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
5 gsumbagdiagOLD.i . . . 4 (𝜑𝐼𝑉)
6 gsumbagdiagOLD.f . . . 4 (𝜑𝐹𝐷)
7 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefiOLD 20746 . . . 4 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
95, 6, 8syl2anc 587 . . 3 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
104, 9eqeltrid 2837 . 2 (𝜑𝑆 ∈ Fin)
11 ovex 7203 . . . 4 (ℕ0m 𝐼) ∈ V
127, 11rab2ex 5203 . . 3 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V
1312a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
14 gsumbagdiagOLD.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
15 xpfi 8863 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
1610, 10, 15syl2anc 587 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
17 simprl 771 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
187, 4, 5, 6gsumbagdiaglemOLD 20751 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)}))
1918simpld 498 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑘𝑆)
20 brxp 5572 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2117, 19, 20sylanbrc 586 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2221pm2.24d 154 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2322impr 458 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
247, 4, 5, 6gsumbagdiaglemOLD 20751 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
2518, 24impbida 801 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})))
261, 2, 3, 10, 13, 14, 16, 23, 10, 25gsumcom2 19214 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  {crab 3057  Vcvv 3398   class class class wbr 5030   × cxp 5523  ccnv 5524  cima 5528  cfv 6339  (class class class)co 7170  cmpo 7172  f cof 7423  r cofr 7424  m cmap 8437  Fincfn 8555  cle 10754  cmin 10948  cn 11716  0cn0 11976  Basecbs 16586  0gc0g 16816   Σg cgsu 16817  CMndccmn 19024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-seq 13461  df-hash 13783  df-0g 16818  df-gsum 16819  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-cntz 18565  df-cmn 19026
This theorem is referenced by:  psrass1lemOLD  20753
  Copyright terms: Public domain W3C validator