MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiagOLD Structured version   Visualization version   GIF version

Theorem gsumbagdiagOLD 20714
Description: Obsolete version of gsumbagdiag 20717 as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiagOLD.i (𝜑𝐼𝑉)
gsumbagdiagOLD.f (𝜑𝐹𝐷)
gsumbagdiagOLD.b 𝐵 = (Base‘𝐺)
gsumbagdiagOLD.g (𝜑𝐺 ∈ CMnd)
gsumbagdiagOLD.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiagOLD (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑥,𝑦   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiagOLD
StepHypRef Expression
1 gsumbagdiagOLD.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2758 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiagOLD.g . 2 (𝜑𝐺 ∈ CMnd)
4 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
5 gsumbagdiagOLD.i . . . 4 (𝜑𝐼𝑉)
6 gsumbagdiagOLD.f . . . 4 (𝜑𝐹𝐷)
7 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefiOLD 20708 . . . 4 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
95, 6, 8syl2anc 587 . . 3 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
104, 9eqeltrid 2856 . 2 (𝜑𝑆 ∈ Fin)
11 ovex 7189 . . . 4 (ℕ0m 𝐼) ∈ V
127, 11rab2ex 5209 . . 3 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V
1312a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
14 gsumbagdiagOLD.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
15 xpfi 8835 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
1610, 10, 15syl2anc 587 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
17 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
187, 4, 5, 6gsumbagdiaglemOLD 20713 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)}))
1918simpld 498 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑘𝑆)
20 brxp 5575 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2117, 19, 20sylanbrc 586 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2221pm2.24d 154 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2322impr 458 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
247, 4, 5, 6gsumbagdiaglemOLD 20713 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
2518, 24impbida 800 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})))
261, 2, 3, 10, 13, 14, 16, 23, 10, 25gsumcom2 19176 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409   class class class wbr 5036   × cxp 5526  ccnv 5527  cima 5531  cfv 6340  (class class class)co 7156  cmpo 7158  f cof 7409  r cofr 7410  m cmap 8422  Fincfn 8540  cle 10727  cmin 10921  cn 11687  0cn0 11947  Basecbs 16554  0gc0g 16784   Σg cgsu 16785  CMndccmn 18986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-ofr 7412  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-fzo 13096  df-seq 13432  df-hash 13754  df-0g 16786  df-gsum 16787  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-cntz 18527  df-cmn 18988
This theorem is referenced by:  psrass1lemOLD  20715
  Copyright terms: Public domain W3C validator