![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumbagdiagOLD | Structured version Visualization version GIF version |
Description: Obsolete version of gsumbagdiag 21360 as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrbagconf1o.s | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
gsumbagdiagOLD.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
gsumbagdiagOLD.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
gsumbagdiagOLD.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumbagdiagOLD.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumbagdiagOLD.x | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumbagdiagOLD | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumbagdiagOLD.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2733 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumbagdiagOLD.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | psrbagconf1o.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} | |
5 | gsumbagdiagOLD.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | gsumbagdiagOLD.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
7 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
8 | 7 | psrbaglefiOLD 21351 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
9 | 5, 6, 8 | syl2anc 585 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
10 | 4, 9 | eqeltrid 2838 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
11 | ovex 7391 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
12 | 7, 11 | rab2ex 5293 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
14 | gsumbagdiagOLD.x | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) | |
15 | xpfi 9264 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) | |
16 | 10, 10, 15 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
17 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) | |
18 | 7, 4, 5, 6 | gsumbagdiaglemOLD 21356 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) |
19 | 18 | simpld 496 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑘 ∈ 𝑆) |
20 | brxp 5682 | . . . . 5 ⊢ (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆)) | |
21 | 17, 19, 20 | sylanbrc 584 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘) |
22 | 21 | pm2.24d 151 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘 → 𝑋 = (0g‘𝐺))) |
23 | 22 | impr 456 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g‘𝐺)) |
24 | 7, 4, 5, 6 | gsumbagdiaglemOLD 21356 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) → (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
25 | 18, 24 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ↔ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)}))) |
26 | 1, 2, 3, 10, 13, 14, 16, 23, 10, 25 | gsumcom2 19757 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3406 Vcvv 3444 class class class wbr 5106 × cxp 5632 ◡ccnv 5633 “ cima 5637 ‘cfv 6497 (class class class)co 7358 ∈ cmpo 7360 ∘f cof 7616 ∘r cofr 7617 ↑m cmap 8768 Fincfn 8886 ≤ cle 11195 − cmin 11390 ℕcn 12158 ℕ0cn0 12418 Basecbs 17088 0gc0g 17326 Σg cgsu 17327 CMndccmn 19567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-ofr 7619 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-pm 8771 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-fzo 13574 df-seq 13913 df-hash 14237 df-0g 17328 df-gsum 17329 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-cntz 19102 df-cmn 19569 |
This theorem is referenced by: psrass1lemOLD 21358 |
Copyright terms: Public domain | W3C validator |