MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   GIF version

Theorem psrlidm 21878
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrlidm (𝜑 → (𝑈 · 𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrlidm
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psr1cl.z . . . . . 6 0 = (0g𝑅)
9 psr1cl.o . . . . . 6 1 = (1r𝑅)
10 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
111, 7, 6, 3, 8, 9, 10, 4psr1cl 21877 . . . . 5 (𝜑𝑈𝐵)
12 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
131, 4, 5, 6, 11, 12psrmulcl 21862 . . . 4 (𝜑 → (𝑈 · 𝑋) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21850 . . 3 (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅))
1514ffnd 6692 . 2 (𝜑 → (𝑈 · 𝑋) Fn 𝐷)
161, 2, 3, 4, 12psrelbas 21850 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6692 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
1911adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
2012adantr 480 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
21 simpr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21860 . . 3 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
23 breq1 5113 . . . . . . . 8 (𝑔 = (𝐼 × {0}) → (𝑔r𝑦 ↔ (𝐼 × {0}) ∘r𝑦))
24 fconstmpt 5703 . . . . . . . . . 10 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
253fczpsrbag 21837 . . . . . . . . . . 11 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
267, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
2724, 26eqeltrid 2833 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
2827adantr 480 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
293psrbagf 21834 . . . . . . . . . . . . 13 (𝑦𝐷𝑦:𝐼⟶ℕ0)
3029adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
3130ffvelcdmda 7059 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
3231nn0ge0d 12513 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → 0 ≤ (𝑦𝑥))
3332ralrimiva 3126 . . . . . . . . 9 ((𝜑𝑦𝐷) → ∀𝑥𝐼 0 ≤ (𝑦𝑥))
34 0nn0 12464 . . . . . . . . . . . 12 0 ∈ ℕ0
3534fconst6 6753 . . . . . . . . . . 11 (𝐼 × {0}):𝐼⟶ℕ0
36 ffn 6691 . . . . . . . . . . 11 ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼)
3735, 36mp1i 13 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) Fn 𝐼)
3830ffnd 6692 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝑦 Fn 𝐼)
397adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝐼𝑉)
40 inidm 4193 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
4134a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 0 ∈ ℕ0)
42 fvconst2g 7179 . . . . . . . . . . 11 ((0 ∈ ℕ0𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
4341, 42sylan 580 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
44 eqidd 2731 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
4537, 38, 39, 39, 40, 43, 44ofrfval 7666 . . . . . . . . 9 ((𝜑𝑦𝐷) → ((𝐼 × {0}) ∘r𝑦 ↔ ∀𝑥𝐼 0 ≤ (𝑦𝑥)))
4633, 45mpbird 257 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∘r𝑦)
4723, 28, 46elrabd 3664 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ {𝑔𝐷𝑔r𝑦})
4847snssd 4776 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ⊆ {𝑔𝐷𝑔r𝑦})
4948resmptd 6014 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
5049oveq2d 7406 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
51 ringcmn 20198 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
526, 51syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5352adantr 480 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
54 ovex 7423 . . . . . . 7 (ℕ0m 𝐼) ∈ V
553, 54rab2ex 5300 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
5655a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
576ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
59 breq1 5113 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
6059elrab 3662 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
6158, 60sylib 218 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
6261simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
631, 2, 3, 4, 19psrelbas 21850 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
6463ffvelcdmda 7059 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧𝐷) → (𝑈𝑧) ∈ (Base‘𝑅))
6562, 64syldan 591 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈𝑧) ∈ (Base‘𝑅))
6616ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
6721adantr 480 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
683psrbagf 21834 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
6962, 68syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
7061simprd 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
713psrbagcon 21841 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7267, 69, 70, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7372simpld 494 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
7466, 73ffvelcdmd 7060 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
752, 18ringcl 20166 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑈𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7657, 65, 74, 75syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7776fmpttd 7090 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
78 eldifi 4097 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
7978, 61sylan2 593 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑧𝐷𝑧r𝑦))
8079simpld 494 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑧𝐷)
81 eqeq1 2734 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0})))
8281ifbid 4515 . . . . . . . . . . 11 (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
839fvexi 6875 . . . . . . . . . . . 12 1 ∈ V
848fvexi 6875 . . . . . . . . . . . 12 0 ∈ V
8583, 84ifex 4542 . . . . . . . . . . 11 if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈ V
8682, 10, 85fvmpt 6971 . . . . . . . . . 10 (𝑧𝐷 → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
8780, 86syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
88 eldifn 4098 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})})
8988adantl 481 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})})
90 velsn 4608 . . . . . . . . . . 11 (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0}))
9189, 90sylnib 328 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0}))
9291iffalsed 4502 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 )
9387, 92eqtrd 2765 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = 0 )
9493oveq1d 7405 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))))
956ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring)
9678, 74sylan2 593 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
972, 18, 8ringlz 20209 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9895, 96, 97syl2anc 584 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9994, 98eqtrd 2765 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
10099, 56suppss2 8182 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})
1013, 54rabex2 5299 . . . . . . . 8 𝐷 ∈ V
102101mptrabex 7202 . . . . . . 7 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V
103102a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V)
104 funmpt 6557 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))
105104a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
10684a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
107 snfi 9017 . . . . . . 7 {(𝐼 × {0})} ∈ Fin
108107a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ∈ Fin)
109 suppssfifsupp 9338 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
110103, 105, 106, 108, 100, 109syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
1112, 8, 53, 56, 77, 100, 110gsumres 19850 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
1126adantr 480 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
113 ringmnd 20159 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
114112, 113syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
115 iftrue 4497 . . . . . . . . . 10 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
116115, 10, 83fvmpt 6971 . . . . . . . . 9 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
11728, 116syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
118 nn0cn 12459 . . . . . . . . . . . 12 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
119118subid1d 11529 . . . . . . . . . . 11 (𝑧 ∈ ℕ0 → (𝑧 − 0) = 𝑧)
120119adantl 481 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧)
12139, 30, 41, 120caofid0r 7690 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑦f − (𝐼 × {0})) = 𝑦)
122121fveq2d 6865 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋‘(𝑦f − (𝐼 × {0}))) = (𝑋𝑦))
123117, 122oveq12d 7408 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = ( 1 (.r𝑅)(𝑋𝑦)))
12416ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1252, 18, 9ringlidm 20185 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
126112, 124, 125syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
127123, 126eqtrd 2765 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = (𝑋𝑦))
128127, 124eqeltrd 2829 . . . . 5 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅))
129 fveq2 6861 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑈𝑧) = (𝑈‘(𝐼 × {0})))
130 oveq2 7398 . . . . . . . 8 (𝑧 = (𝐼 × {0}) → (𝑦f𝑧) = (𝑦f − (𝐼 × {0})))
131130fveq2d 6865 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦f𝑧)) = (𝑋‘(𝑦f − (𝐼 × {0}))))
132129, 131oveq12d 7408 . . . . . 6 (𝑧 = (𝐼 × {0}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
1332, 132gsumsn 19891 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
134114, 28, 128, 133syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13550, 111, 1343eqtr3d 2773 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13622, 135, 1273eqtrd 2769 . 2 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋𝑦))
13715, 17, 136eqfnfvd 7009 1 (𝜑 → (𝑈 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  cres 5643  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075  cle 11216  cmin 11412  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  CMndccmn 19717  1rcur 20097  Ringcrg 20149   mPwSer cmps 21820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-psr 21825
This theorem is referenced by:  psrring  21886  psr1  21887
  Copyright terms: Public domain W3C validator