MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   GIF version

Theorem psrlidm 19677
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrlidm (𝜑 → (𝑈 · 𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrlidm
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2765 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psr1cl.z . . . . . 6 0 = (0g𝑅)
9 psr1cl.o . . . . . 6 1 = (1r𝑅)
10 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
111, 7, 6, 3, 8, 9, 10, 4psr1cl 19676 . . . . 5 (𝜑𝑈𝐵)
12 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
131, 4, 5, 6, 11, 12psrmulcl 19662 . . . 4 (𝜑 → (𝑈 · 𝑋) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 19653 . . 3 (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅))
1514ffnd 6224 . 2 (𝜑 → (𝑈 · 𝑋) Fn 𝐷)
161, 2, 3, 4, 12psrelbas 19653 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6224 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2765 . . . 4 (.r𝑅) = (.r𝑅)
1911adantr 472 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
2012adantr 472 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
21 simpr 477 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19660 . . 3 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
23 fconstmpt 5333 . . . . . . . . . 10 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
243fczpsrbag 19641 . . . . . . . . . . 11 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
257, 24syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
2623, 25syl5eqel 2848 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
2726adantr 472 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
283psrbagf 19639 . . . . . . . . . . . . 13 ((𝐼𝑉𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
297, 28sylan 575 . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
3029ffvelrnda 6549 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
3130nn0ge0d 11601 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → 0 ≤ (𝑦𝑥))
3231ralrimiva 3113 . . . . . . . . 9 ((𝜑𝑦𝐷) → ∀𝑥𝐼 0 ≤ (𝑦𝑥))
33 0nn0 11555 . . . . . . . . . . . 12 0 ∈ ℕ0
3433fconst6 6277 . . . . . . . . . . 11 (𝐼 × {0}):𝐼⟶ℕ0
35 ffn 6223 . . . . . . . . . . 11 ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼)
3634, 35mp1i 13 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) Fn 𝐼)
3729ffnd 6224 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝑦 Fn 𝐼)
387adantr 472 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝐼𝑉)
39 inidm 3982 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
4033a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 0 ∈ ℕ0)
41 fvconst2g 6660 . . . . . . . . . . 11 ((0 ∈ ℕ0𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
4240, 41sylan 575 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
43 eqidd 2766 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
4436, 37, 38, 38, 39, 42, 43ofrfval 7103 . . . . . . . . 9 ((𝜑𝑦𝐷) → ((𝐼 × {0}) ∘𝑟𝑦 ↔ ∀𝑥𝐼 0 ≤ (𝑦𝑥)))
4532, 44mpbird 248 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∘𝑟𝑦)
46 breq1 4812 . . . . . . . . 9 (𝑔 = (𝐼 × {0}) → (𝑔𝑟𝑦 ↔ (𝐼 × {0}) ∘𝑟𝑦))
4746elrab 3519 . . . . . . . 8 ((𝐼 × {0}) ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ ((𝐼 × {0}) ∈ 𝐷 ∧ (𝐼 × {0}) ∘𝑟𝑦))
4827, 45, 47sylanbrc 578 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ {𝑔𝐷𝑔𝑟𝑦})
4948snssd 4494 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ⊆ {𝑔𝐷𝑔𝑟𝑦})
5049resmptd 5629 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))))
5150oveq2d 6858 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
52 ringcmn 18848 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
536, 52syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5453adantr 472 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
55 ovex 6874 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
563, 55rab2ex 4976 . . . . . 6 {𝑔𝐷𝑔𝑟𝑦} ∈ V
5756a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔𝑟𝑦} ∈ V)
586ad2antrr 717 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑅 ∈ Ring)
59 simpr 477 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
60 breq1 4812 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔𝑟𝑦𝑧𝑟𝑦))
6160elrab 3519 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑧𝐷𝑧𝑟𝑦))
6259, 61sylib 209 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑧𝐷𝑧𝑟𝑦))
6362simpld 488 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝐷)
641, 2, 3, 4, 19psrelbas 19653 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
6564ffvelrnda 6549 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧𝐷) → (𝑈𝑧) ∈ (Base‘𝑅))
6663, 65syldan 585 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑈𝑧) ∈ (Base‘𝑅))
6716ad2antrr 717 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
687ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝐼𝑉)
6921adantr 472 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦𝐷)
703psrbagf 19639 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
7168, 63, 70syl2anc 579 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℕ0)
7262simprd 489 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝑟𝑦)
733psrbagcon 19645 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦𝐷𝑧:𝐼⟶ℕ0𝑧𝑟𝑦)) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
7468, 69, 71, 72, 73syl13anc 1491 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
7574simpld 488 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑦𝑓𝑧) ∈ 𝐷)
7667, 75ffvelrnd 6550 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
772, 18ringcl 18828 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑈𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
7858, 66, 76, 77syl3anc 1490 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
7978fmpttd 6575 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))):{𝑔𝐷𝑔𝑟𝑦}⟶(Base‘𝑅))
80 eldifi 3894 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
8180, 62sylan2 586 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑧𝐷𝑧𝑟𝑦))
8281simpld 488 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → 𝑧𝐷)
83 eqeq1 2769 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0})))
8483ifbid 4265 . . . . . . . . . . 11 (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
859fvexi 6389 . . . . . . . . . . . 12 1 ∈ V
868fvexi 6389 . . . . . . . . . . . 12 0 ∈ V
8785, 86ifex 4291 . . . . . . . . . . 11 if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈ V
8884, 10, 87fvmpt 6471 . . . . . . . . . 10 (𝑧𝐷 → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
8982, 88syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
90 eldifn 3895 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})})
9190adantl 473 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})})
92 velsn 4350 . . . . . . . . . . 11 (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0}))
9391, 92sylnib 319 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0}))
9493iffalsed 4254 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 )
9589, 94eqtrd 2799 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = 0 )
9695oveq1d 6857 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))))
976ad2antrr 717 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring)
9880, 76sylan2 586 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
992, 18, 8ringlz 18854 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
10097, 98, 99syl2anc 579 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
10196, 100eqtrd 2799 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
102101, 57suppss2 7532 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})
1033, 55rabex2 4975 . . . . . . . 8 𝐷 ∈ V
104103mptrabex 6681 . . . . . . 7 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V
105104a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V)
106 funmpt 6106 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))
107106a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))))
10886a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
109 snfi 8245 . . . . . . 7 {(𝐼 × {0})} ∈ Fin
110109a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ∈ Fin)
111 suppssfifsupp 8497 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) finSupp 0 )
112105, 107, 108, 110, 102, 111syl32anc 1497 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) finSupp 0 )
1132, 8, 54, 57, 79, 102, 112gsumres 18580 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
1146adantr 472 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
115 ringmnd 18823 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
116114, 115syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
117 iftrue 4249 . . . . . . . . . 10 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
118117, 10, 85fvmpt 6471 . . . . . . . . 9 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
11927, 118syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
120 nn0cn 11549 . . . . . . . . . . . 12 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
121120subid1d 10635 . . . . . . . . . . 11 (𝑧 ∈ ℕ0 → (𝑧 − 0) = 𝑧)
122121adantl 473 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧)
12338, 29, 40, 122caofid0r 7124 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑦𝑓 − (𝐼 × {0})) = 𝑦)
124123fveq2d 6379 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋‘(𝑦𝑓 − (𝐼 × {0}))) = (𝑋𝑦))
125119, 124oveq12d 6860 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) = ( 1 (.r𝑅)(𝑋𝑦)))
12616ffvelrnda 6549 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1272, 18, 9ringlidm 18838 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
128114, 126, 127syl2anc 579 . . . . . . 7 ((𝜑𝑦𝐷) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
129125, 128eqtrd 2799 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) = (𝑋𝑦))
130129, 126eqeltrd 2844 . . . . 5 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) ∈ (Base‘𝑅))
131 fveq2 6375 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑈𝑧) = (𝑈‘(𝐼 × {0})))
132 oveq2 6850 . . . . . . . 8 (𝑧 = (𝐼 × {0}) → (𝑦𝑓𝑧) = (𝑦𝑓 − (𝐼 × {0})))
133132fveq2d 6379 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦𝑓𝑧)) = (𝑋‘(𝑦𝑓 − (𝐼 × {0}))))
134131, 133oveq12d 6860 . . . . . 6 (𝑧 = (𝐼 × {0}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
1352, 134gsumsn 18620 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
136116, 27, 130, 135syl3anc 1490 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
13751, 113, 1363eqtr3d 2807 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
13822, 137, 1293eqtrd 2803 . 2 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋𝑦))
13915, 17, 138eqfnfvd 6504 1 (𝜑 → (𝑈 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  {crab 3059  Vcvv 3350  cdif 3729  wss 3732  ifcif 4243  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275  ccnv 5276  cres 5279  cima 5280  Fun wfun 6062   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑓 cof 7093  𝑟 cofr 7094   supp csupp 7497  𝑚 cmap 8060  Fincfn 8160   finSupp cfsupp 8482  0cc0 10189  cle 10329  cmin 10520  cn 11274  0cn0 11538  Basecbs 16132  .rcmulr 16217  0gc0g 16368   Σg cgsu 16369  Mndcmnd 17562  CMndccmn 18459  1rcur 18768  Ringcrg 18814   mPwSer cmps 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-tset 16235  df-0g 16370  df-gsum 16371  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-psr 19630
This theorem is referenced by:  psrring  19685  psr1  19686
  Copyright terms: Public domain W3C validator