MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   GIF version

Theorem psrlidm 19887
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrlidm (𝜑 → (𝑈 · 𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrlidm
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2772 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psr1cl.z . . . . . 6 0 = (0g𝑅)
9 psr1cl.o . . . . . 6 1 = (1r𝑅)
10 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
111, 7, 6, 3, 8, 9, 10, 4psr1cl 19886 . . . . 5 (𝜑𝑈𝐵)
12 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
131, 4, 5, 6, 11, 12psrmulcl 19872 . . . 4 (𝜑 → (𝑈 · 𝑋) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 19863 . . 3 (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅))
1514ffnd 6339 . 2 (𝜑 → (𝑈 · 𝑋) Fn 𝐷)
161, 2, 3, 4, 12psrelbas 19863 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6339 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2772 . . . 4 (.r𝑅) = (.r𝑅)
1911adantr 473 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
2012adantr 473 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
21 simpr 477 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 19870 . . 3 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
23 breq1 4926 . . . . . . . 8 (𝑔 = (𝐼 × {0}) → (𝑔𝑟𝑦 ↔ (𝐼 × {0}) ∘𝑟𝑦))
24 fconstmpt 5457 . . . . . . . . . 10 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
253fczpsrbag 19851 . . . . . . . . . . 11 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
267, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
2724, 26syl5eqel 2864 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
2827adantr 473 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
293psrbagf 19849 . . . . . . . . . . . . 13 ((𝐼𝑉𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
307, 29sylan 572 . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
3130ffvelrnda 6670 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
3231nn0ge0d 11763 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → 0 ≤ (𝑦𝑥))
3332ralrimiva 3126 . . . . . . . . 9 ((𝜑𝑦𝐷) → ∀𝑥𝐼 0 ≤ (𝑦𝑥))
34 0nn0 11717 . . . . . . . . . . . 12 0 ∈ ℕ0
3534fconst6 6392 . . . . . . . . . . 11 (𝐼 × {0}):𝐼⟶ℕ0
36 ffn 6338 . . . . . . . . . . 11 ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼)
3735, 36mp1i 13 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) Fn 𝐼)
3830ffnd 6339 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝑦 Fn 𝐼)
397adantr 473 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝐼𝑉)
40 inidm 4077 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
4134a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 0 ∈ ℕ0)
42 fvconst2g 6785 . . . . . . . . . . 11 ((0 ∈ ℕ0𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
4341, 42sylan 572 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
44 eqidd 2773 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
4537, 38, 39, 39, 40, 43, 44ofrfval 7229 . . . . . . . . 9 ((𝜑𝑦𝐷) → ((𝐼 × {0}) ∘𝑟𝑦 ↔ ∀𝑥𝐼 0 ≤ (𝑦𝑥)))
4633, 45mpbird 249 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∘𝑟𝑦)
4723, 28, 46elrabd 3592 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ {𝑔𝐷𝑔𝑟𝑦})
4847snssd 4610 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ⊆ {𝑔𝐷𝑔𝑟𝑦})
4948resmptd 5747 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))))
5049oveq2d 6986 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
51 ringcmn 19044 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
526, 51syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5352adantr 473 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
54 ovex 7002 . . . . . . 7 (ℕ0𝑚 𝐼) ∈ V
553, 54rab2ex 5088 . . . . . 6 {𝑔𝐷𝑔𝑟𝑦} ∈ V
5655a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔𝑟𝑦} ∈ V)
576ad2antrr 713 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑅 ∈ Ring)
58 simpr 477 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
59 breq1 4926 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔𝑟𝑦𝑧𝑟𝑦))
6059elrab 3589 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↔ (𝑧𝐷𝑧𝑟𝑦))
6158, 60sylib 210 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑧𝐷𝑧𝑟𝑦))
6261simpld 487 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝐷)
631, 2, 3, 4, 19psrelbas 19863 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
6463ffvelrnda 6670 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧𝐷) → (𝑈𝑧) ∈ (Base‘𝑅))
6562, 64syldan 582 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑈𝑧) ∈ (Base‘𝑅))
6616ad2antrr 713 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
677ad2antrr 713 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝐼𝑉)
6821adantr 473 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑦𝐷)
693psrbagf 19849 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
7067, 62, 69syl2anc 576 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧:𝐼⟶ℕ0)
7161simprd 488 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → 𝑧𝑟𝑦)
723psrbagcon 19855 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑦𝐷𝑧:𝐼⟶ℕ0𝑧𝑟𝑦)) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
7367, 68, 70, 71, 72syl13anc 1352 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑦𝑓𝑧) ∈ 𝐷 ∧ (𝑦𝑓𝑧) ∘𝑟𝑦))
7473simpld 487 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑦𝑓𝑧) ∈ 𝐷)
7566, 74ffvelrnd 6671 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
762, 18ringcl 19024 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑈𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
7757, 65, 75, 76syl3anc 1351 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) ∈ (Base‘𝑅))
7877fmpttd 6696 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))):{𝑔𝐷𝑔𝑟𝑦}⟶(Base‘𝑅))
79 eldifi 3989 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦})
8079, 61sylan2 583 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑧𝐷𝑧𝑟𝑦))
8180simpld 487 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → 𝑧𝐷)
82 eqeq1 2776 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0})))
8382ifbid 4366 . . . . . . . . . . 11 (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
849fvexi 6507 . . . . . . . . . . . 12 1 ∈ V
858fvexi 6507 . . . . . . . . . . . 12 0 ∈ V
8684, 85ifex 4392 . . . . . . . . . . 11 if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈ V
8783, 10, 86fvmpt 6589 . . . . . . . . . 10 (𝑧𝐷 → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
8881, 87syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
89 eldifn 3990 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})})
9089adantl 474 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})})
91 velsn 4451 . . . . . . . . . . 11 (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0}))
9290, 91sylnib 320 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0}))
9392iffalsed 4355 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 )
9488, 93eqtrd 2808 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = 0 )
9594oveq1d 6985 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))))
966ad2antrr 713 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring)
9779, 75sylan2 583 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅))
982, 18, 8ringlz 19050 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦𝑓𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
9996, 97, 98syl2anc 576 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
10095, 99eqtrd 2808 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔𝑟𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = 0 )
101100, 56suppss2 7660 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})
1023, 54rabex2 5087 . . . . . . . 8 𝐷 ∈ V
103102mptrabex 6808 . . . . . . 7 (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V
104103a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V)
105 funmpt 6220 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))
106105a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))))
10785a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
108 snfi 8383 . . . . . . 7 {(𝐼 × {0})} ∈ Fin
109108a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ∈ Fin)
110 suppssfifsupp 8635 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) finSupp 0 )
111104, 106, 107, 109, 101, 110syl32anc 1358 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) finSupp 0 )
1122, 8, 53, 56, 78, 101, 111gsumres 18777 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))))
1136adantr 473 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
114 ringmnd 19019 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
115113, 114syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
116 iftrue 4350 . . . . . . . . . 10 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
117116, 10, 84fvmpt 6589 . . . . . . . . 9 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
11828, 117syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
119 nn0cn 11711 . . . . . . . . . . . 12 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
120119subid1d 10779 . . . . . . . . . . 11 (𝑧 ∈ ℕ0 → (𝑧 − 0) = 𝑧)
121120adantl 474 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧)
12239, 30, 41, 121caofid0r 7250 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑦𝑓 − (𝐼 × {0})) = 𝑦)
123122fveq2d 6497 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋‘(𝑦𝑓 − (𝐼 × {0}))) = (𝑋𝑦))
124118, 123oveq12d 6988 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) = ( 1 (.r𝑅)(𝑋𝑦)))
12516ffvelrnda 6670 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1262, 18, 9ringlidm 19034 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
127113, 125, 126syl2anc 576 . . . . . . 7 ((𝜑𝑦𝐷) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
128124, 127eqtrd 2808 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) = (𝑋𝑦))
129128, 125eqeltrd 2860 . . . . 5 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) ∈ (Base‘𝑅))
130 fveq2 6493 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑈𝑧) = (𝑈‘(𝐼 × {0})))
131 oveq2 6978 . . . . . . . 8 (𝑧 = (𝐼 × {0}) → (𝑦𝑓𝑧) = (𝑦𝑓 − (𝐼 × {0})))
132131fveq2d 6497 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦𝑓𝑧)) = (𝑋‘(𝑦𝑓 − (𝐼 × {0}))))
133130, 132oveq12d 6988 . . . . . 6 (𝑧 = (𝐼 × {0}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
1342, 133gsumsn 18817 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
135115, 28, 129, 134syl3anc 1351 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
13650, 112, 1353eqtr3d 2816 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔𝑟𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦𝑓𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦𝑓 − (𝐼 × {0})))))
13722, 136, 1283eqtrd 2812 . 2 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋𝑦))
13815, 17, 137eqfnfvd 6624 1 (𝜑 → (𝑈 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2048  wral 3082  {crab 3086  Vcvv 3409  cdif 3822  wss 3825  ifcif 4344  {csn 4435   class class class wbr 4923  cmpt 5002   × cxp 5398  ccnv 5399  cres 5402  cima 5403  Fun wfun 6176   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  𝑓 cof 7219  𝑟 cofr 7220   supp csupp 7626  𝑚 cmap 8198  Fincfn 8298   finSupp cfsupp 8620  0cc0 10327  cle 10467  cmin 10662  cn 11431  0cn0 11700  Basecbs 16329  .rcmulr 16412  0gc0g 16559   Σg cgsu 16560  Mndcmnd 17752  CMndccmn 18656  1rcur 18964  Ringcrg 19010   mPwSer cmps 19835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-ofr 7222  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-fzo 12843  df-seq 13178  df-hash 13499  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-tset 16430  df-0g 16561  df-gsum 16562  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-mulg 18002  df-cntz 18208  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-psr 19840
This theorem is referenced by:  psrring  19895  psr1  19896
  Copyright terms: Public domain W3C validator