| Step | Hyp | Ref
| Expression |
| 1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | psr1cl.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 4 | | psr1cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
| 5 | | psrlidm.t |
. . . . 5
⊢ · =
(.r‘𝑆) |
| 6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | | psrring.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 8 | | psr1cl.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 9 | | psr1cl.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
| 10 | | psr1cl.u |
. . . . . 6
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
| 11 | 1, 7, 6, 3, 8, 9, 10, 4 | psr1cl 21926 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 12 | | psrlidm.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 13 | 1, 4, 5, 6, 11, 12 | psrmulcl 21911 |
. . . 4
⊢ (𝜑 → (𝑈 · 𝑋) ∈ 𝐵) |
| 14 | 1, 2, 3, 4, 13 | psrelbas 21899 |
. . 3
⊢ (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅)) |
| 15 | 14 | ffnd 6712 |
. 2
⊢ (𝜑 → (𝑈 · 𝑋) Fn 𝐷) |
| 16 | 1, 2, 3, 4, 12 | psrelbas 21899 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 17 | 16 | ffnd 6712 |
. 2
⊢ (𝜑 → 𝑋 Fn 𝐷) |
| 18 | | eqid 2736 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 19 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈 ∈ 𝐵) |
| 20 | 12 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
| 21 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
| 22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 21909 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
| 23 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑔 = (𝐼 × {0}) → (𝑔 ∘r ≤ 𝑦 ↔ (𝐼 × {0}) ∘r ≤ 𝑦)) |
| 24 | | fconstmpt 5721 |
. . . . . . . . . 10
⊢ (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0) |
| 25 | 3 | fczpsrbag 21886 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| 26 | 7, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| 27 | 24, 26 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) |
| 28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ 𝐷) |
| 29 | 3 | psrbagf 21883 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) |
| 31 | 30 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
| 32 | 31 | nn0ge0d 12570 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝑦‘𝑥)) |
| 33 | 32 | ralrimiva 3133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥)) |
| 34 | | 0nn0 12521 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
| 35 | 34 | fconst6 6773 |
. . . . . . . . . . 11
⊢ (𝐼 × {0}):𝐼⟶ℕ0 |
| 36 | | ffn 6711 |
. . . . . . . . . . 11
⊢ ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼) |
| 37 | 35, 36 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) Fn 𝐼) |
| 38 | 30 | ffnd 6712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 Fn 𝐼) |
| 39 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
| 40 | | inidm 4207 |
. . . . . . . . . 10
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 41 | 34 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈
ℕ0) |
| 42 | | fvconst2g 7199 |
. . . . . . . . . . 11
⊢ ((0
∈ ℕ0 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) |
| 43 | 41, 42 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) |
| 44 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) = (𝑦‘𝑥)) |
| 45 | 37, 38, 39, 39, 40, 43, 44 | ofrfval 7686 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐼 × {0}) ∘r ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥))) |
| 46 | 33, 45 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∘r ≤ 𝑦) |
| 47 | 23, 28, 46 | elrabd 3678 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
| 48 | 47 | snssd 4790 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
| 49 | 48 | resmptd 6032 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) |
| 50 | 49 | oveq2d 7426 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
| 51 | | ringcmn 20247 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 52 | 6, 51 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 53 | 52 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 54 | | ovex 7443 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 55 | 3, 54 | rab2ex 5317 |
. . . . . 6
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V |
| 56 | 55 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V) |
| 57 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑅 ∈ Ring) |
| 58 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
| 59 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑧 → (𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦)) |
| 60 | 59 | elrab 3676 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↔ (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
| 61 | 58, 60 | sylib 218 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
| 62 | 61 | simpld 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ 𝐷) |
| 63 | 1, 2, 3, 4, 19 | psrelbas 21899 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈:𝐷⟶(Base‘𝑅)) |
| 64 | 63 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ 𝐷) → (𝑈‘𝑧) ∈ (Base‘𝑅)) |
| 65 | 62, 64 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑈‘𝑧) ∈ (Base‘𝑅)) |
| 66 | 16 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 67 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑦 ∈ 𝐷) |
| 68 | 3 | psrbagf 21883 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) |
| 69 | 62, 68 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧:𝐼⟶ℕ0) |
| 70 | 61 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∘r ≤ 𝑦) |
| 71 | 3 | psrbagcon 21890 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧:𝐼⟶ℕ0 ∧ 𝑧 ∘r ≤ 𝑦) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
| 72 | 67, 69, 70, 71 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
| 73 | 72 | simpld 494 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑦 ∘f − 𝑧) ∈ 𝐷) |
| 74 | 66, 73 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) |
| 75 | 2, 18 | ringcl 20215 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑈‘𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
| 76 | 57, 65, 74, 75 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
| 77 | 76 | fmpttd 7110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}⟶(Base‘𝑅)) |
| 78 | | eldifi 4111 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
| 79 | 78, 61 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
| 80 | 79 | simpld 494 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑧 ∈ 𝐷) |
| 81 | | eqeq1 2740 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0}))) |
| 82 | 81 | ifbid 4529 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
| 83 | 9 | fvexi 6895 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
| 84 | 8 | fvexi 6895 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 85 | 83, 84 | ifex 4556 |
. . . . . . . . . . 11
⊢ if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈
V |
| 86 | 82, 10, 85 | fvmpt 6991 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐷 → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
| 87 | 80, 86 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
| 88 | | eldifn 4112 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})}) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})}) |
| 90 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0})) |
| 91 | 89, 90 | sylnib 328 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0})) |
| 92 | 91 | iffalsed 4516 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 ) |
| 93 | 87, 92 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = 0 ) |
| 94 | 93 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) |
| 95 | 6 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring) |
| 96 | 78, 74 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) |
| 97 | 2, 18, 8 | ringlz 20258 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
| 98 | 95, 96, 97 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
| 99 | 94, 98 | eqtrd 2771 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
| 100 | 99, 56 | suppss2 8204 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})}) |
| 101 | 3, 54 | rabex2 5316 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
| 102 | 101 | mptrabex 7222 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V |
| 103 | 102 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V) |
| 104 | | funmpt 6579 |
. . . . . . 7
⊢ Fun
(𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) |
| 105 | 104 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) |
| 106 | 84 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈ V) |
| 107 | | snfi 9062 |
. . . . . . 7
⊢ {(𝐼 × {0})} ∈
Fin |
| 108 | 107 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ∈ Fin) |
| 109 | | suppssfifsupp 9397 |
. . . . . 6
⊢ ((((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧
((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
| 110 | 103, 105,
106, 108, 100, 109 | syl32anc 1380 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
| 111 | 2, 8, 53, 56, 77, 100, 110 | gsumres 19899 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
| 112 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 113 | | ringmnd 20208 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 114 | 112, 113 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Mnd) |
| 115 | | iftrue 4511 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 ) |
| 116 | 115, 10, 83 | fvmpt 6991 |
. . . . . . . . 9
⊢ ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 ) |
| 117 | 28, 116 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝐼 × {0})) = 1 ) |
| 118 | | nn0cn 12516 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) |
| 119 | 118 | subid1d 11588 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ0
→ (𝑧 − 0) =
𝑧) |
| 120 | 119 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧) |
| 121 | 39, 30, 41, 120 | caofid0r 7710 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∘f − (𝐼 × {0})) = 𝑦) |
| 122 | 121 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘(𝑦 ∘f − (𝐼 × {0}))) = (𝑋‘𝑦)) |
| 123 | 117, 122 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = ( 1
(.r‘𝑅)(𝑋‘𝑦))) |
| 124 | 16 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) |
| 125 | 2, 18, 9 | ringlidm 20234 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑦) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) |
| 126 | 112, 124,
125 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) |
| 127 | 123, 126 | eqtrd 2771 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = (𝑋‘𝑦)) |
| 128 | 127, 124 | eqeltrd 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) |
| 129 | | fveq2 6881 |
. . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑈‘𝑧) = (𝑈‘(𝐼 × {0}))) |
| 130 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑧 = (𝐼 × {0}) → (𝑦 ∘f − 𝑧) = (𝑦 ∘f − (𝐼 × {0}))) |
| 131 | 130 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦 ∘f − 𝑧)) = (𝑋‘(𝑦 ∘f − (𝐼 ×
{0})))) |
| 132 | 129, 131 | oveq12d 7428 |
. . . . . 6
⊢ (𝑧 = (𝐼 × {0}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
| 133 | 2, 132 | gsumsn 19940 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
| 134 | 114, 28, 128, 133 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
| 135 | 50, 111, 134 | 3eqtr3d 2779 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
| 136 | 22, 135, 127 | 3eqtrd 2775 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋‘𝑦)) |
| 137 | 15, 17, 136 | eqfnfvd 7029 |
1
⊢ (𝜑 → (𝑈 · 𝑋) = 𝑋) |