MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   GIF version

Theorem psrlidm 20928
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrlidm (𝜑 → (𝑈 · 𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrlidm
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psr1cl.z . . . . . 6 0 = (0g𝑅)
9 psr1cl.o . . . . . 6 1 = (1r𝑅)
10 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
111, 7, 6, 3, 8, 9, 10, 4psr1cl 20927 . . . . 5 (𝜑𝑈𝐵)
12 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
131, 4, 5, 6, 11, 12psrmulcl 20913 . . . 4 (𝜑 → (𝑈 · 𝑋) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 20904 . . 3 (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅))
1514ffnd 6546 . 2 (𝜑 → (𝑈 · 𝑋) Fn 𝐷)
161, 2, 3, 4, 12psrelbas 20904 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6546 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
1911adantr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
2012adantr 484 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
21 simpr 488 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 20911 . . 3 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
23 breq1 5056 . . . . . . . 8 (𝑔 = (𝐼 × {0}) → (𝑔r𝑦 ↔ (𝐼 × {0}) ∘r𝑦))
24 fconstmpt 5611 . . . . . . . . . 10 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
253fczpsrbag 20882 . . . . . . . . . . 11 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
267, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
2724, 26eqeltrid 2842 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
2827adantr 484 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
293psrbagf 20877 . . . . . . . . . . . . 13 (𝑦𝐷𝑦:𝐼⟶ℕ0)
3029adantl 485 . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
3130ffvelrnda 6904 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
3231nn0ge0d 12153 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → 0 ≤ (𝑦𝑥))
3332ralrimiva 3105 . . . . . . . . 9 ((𝜑𝑦𝐷) → ∀𝑥𝐼 0 ≤ (𝑦𝑥))
34 0nn0 12105 . . . . . . . . . . . 12 0 ∈ ℕ0
3534fconst6 6609 . . . . . . . . . . 11 (𝐼 × {0}):𝐼⟶ℕ0
36 ffn 6545 . . . . . . . . . . 11 ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼)
3735, 36mp1i 13 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) Fn 𝐼)
3830ffnd 6546 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝑦 Fn 𝐼)
397adantr 484 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝐼𝑉)
40 inidm 4133 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
4134a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 0 ∈ ℕ0)
42 fvconst2g 7017 . . . . . . . . . . 11 ((0 ∈ ℕ0𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
4341, 42sylan 583 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
44 eqidd 2738 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
4537, 38, 39, 39, 40, 43, 44ofrfval 7478 . . . . . . . . 9 ((𝜑𝑦𝐷) → ((𝐼 × {0}) ∘r𝑦 ↔ ∀𝑥𝐼 0 ≤ (𝑦𝑥)))
4633, 45mpbird 260 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∘r𝑦)
4723, 28, 46elrabd 3604 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ {𝑔𝐷𝑔r𝑦})
4847snssd 4722 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ⊆ {𝑔𝐷𝑔r𝑦})
4948resmptd 5908 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
5049oveq2d 7229 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
51 ringcmn 19599 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
526, 51syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5352adantr 484 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
54 ovex 7246 . . . . . . 7 (ℕ0m 𝐼) ∈ V
553, 54rab2ex 5228 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
5655a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
576ad2antrr 726 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
58 simpr 488 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
59 breq1 5056 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
6059elrab 3602 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
6158, 60sylib 221 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
6261simpld 498 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
631, 2, 3, 4, 19psrelbas 20904 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
6463ffvelrnda 6904 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧𝐷) → (𝑈𝑧) ∈ (Base‘𝑅))
6562, 64syldan 594 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈𝑧) ∈ (Base‘𝑅))
6616ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
6721adantr 484 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
683psrbagf 20877 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
6962, 68syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
7061simprd 499 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
713psrbagcon 20889 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7267, 69, 70, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7372simpld 498 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
7466, 73ffvelrnd 6905 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
752, 18ringcl 19579 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑈𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7657, 65, 74, 75syl3anc 1373 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7776fmpttd 6932 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
78 eldifi 4041 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
7978, 61sylan2 596 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑧𝐷𝑧r𝑦))
8079simpld 498 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑧𝐷)
81 eqeq1 2741 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0})))
8281ifbid 4462 . . . . . . . . . . 11 (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
839fvexi 6731 . . . . . . . . . . . 12 1 ∈ V
848fvexi 6731 . . . . . . . . . . . 12 0 ∈ V
8583, 84ifex 4489 . . . . . . . . . . 11 if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈ V
8682, 10, 85fvmpt 6818 . . . . . . . . . 10 (𝑧𝐷 → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
8780, 86syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
88 eldifn 4042 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})})
8988adantl 485 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})})
90 velsn 4557 . . . . . . . . . . 11 (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0}))
9189, 90sylnib 331 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0}))
9291iffalsed 4450 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 )
9387, 92eqtrd 2777 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = 0 )
9493oveq1d 7228 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))))
956ad2antrr 726 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring)
9678, 74sylan2 596 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
972, 18, 8ringlz 19605 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9895, 96, 97syl2anc 587 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9994, 98eqtrd 2777 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
10099, 56suppss2 7942 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})
1013, 54rabex2 5227 . . . . . . . 8 𝐷 ∈ V
102101mptrabex 7041 . . . . . . 7 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V
103102a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V)
104 funmpt 6418 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))
105104a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
10684a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
107 snfi 8721 . . . . . . 7 {(𝐼 × {0})} ∈ Fin
108107a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ∈ Fin)
109 suppssfifsupp 9000 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
110103, 105, 106, 108, 100, 109syl32anc 1380 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
1112, 8, 53, 56, 77, 100, 110gsumres 19298 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
1126adantr 484 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
113 ringmnd 19572 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
114112, 113syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
115 iftrue 4445 . . . . . . . . . 10 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
116115, 10, 83fvmpt 6818 . . . . . . . . 9 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
11728, 116syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
118 nn0cn 12100 . . . . . . . . . . . 12 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
119118subid1d 11178 . . . . . . . . . . 11 (𝑧 ∈ ℕ0 → (𝑧 − 0) = 𝑧)
120119adantl 485 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧)
12139, 30, 41, 120caofid0r 7500 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑦f − (𝐼 × {0})) = 𝑦)
122121fveq2d 6721 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋‘(𝑦f − (𝐼 × {0}))) = (𝑋𝑦))
123117, 122oveq12d 7231 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = ( 1 (.r𝑅)(𝑋𝑦)))
12416ffvelrnda 6904 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1252, 18, 9ringlidm 19589 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
126112, 124, 125syl2anc 587 . . . . . . 7 ((𝜑𝑦𝐷) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
127123, 126eqtrd 2777 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = (𝑋𝑦))
128127, 124eqeltrd 2838 . . . . 5 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅))
129 fveq2 6717 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑈𝑧) = (𝑈‘(𝐼 × {0})))
130 oveq2 7221 . . . . . . . 8 (𝑧 = (𝐼 × {0}) → (𝑦f𝑧) = (𝑦f − (𝐼 × {0})))
131130fveq2d 6721 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦f𝑧)) = (𝑋‘(𝑦f − (𝐼 × {0}))))
132129, 131oveq12d 7231 . . . . . 6 (𝑧 = (𝐼 × {0}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
1332, 132gsumsn 19339 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
134114, 28, 128, 133syl3anc 1373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13550, 111, 1343eqtr3d 2785 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13622, 135, 1273eqtrd 2781 . 2 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋𝑦))
13715, 17, 136eqfnfvd 6855 1 (𝜑 → (𝑈 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  {crab 3065  Vcvv 3408  cdif 3863  wss 3866  ifcif 4439  {csn 4541   class class class wbr 5053  cmpt 5135   × cxp 5549  ccnv 5550  cres 5553  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  f cof 7467  r cofr 7468   supp csupp 7903  m cmap 8508  Fincfn 8626   finSupp cfsupp 8985  0cc0 10729  cle 10868  cmin 11062  cn 11830  0cn0 12090  Basecbs 16760  .rcmulr 16803  0gc0g 16944   Σg cgsu 16945  Mndcmnd 18173  CMndccmn 19170  1rcur 19516  Ringcrg 19562   mPwSer cmps 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-tset 16821  df-0g 16946  df-gsum 16947  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-psr 20868
This theorem is referenced by:  psrring  20936  psr1  20937
  Copyright terms: Public domain W3C validator