MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrlidm Structured version   Visualization version   GIF version

Theorem psrlidm 21372
Description: The identity element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psr1cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr1cl.z 0 = (0g𝑅)
psr1cl.o 1 = (1r𝑅)
psr1cl.u 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
psr1cl.b 𝐵 = (Base‘𝑆)
psrlidm.t · = (.r𝑆)
psrlidm.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psrlidm (𝜑 → (𝑈 · 𝑋) = 𝑋)
Distinct variable groups:   𝑥,𝑓, 0   𝑓,𝐼,𝑥   𝑥,𝐵   𝑅,𝑓,𝑥   𝑥,𝐷   𝑓,𝑋,𝑥   𝜑,𝑥   𝑥,𝑉   𝑥, ·   𝑥,𝑆   𝑥, 1
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   𝑈(𝑥,𝑓)   1 (𝑓)   𝑉(𝑓)

Proof of Theorem psrlidm
Dummy variables 𝑦 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 psr1cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
4 psr1cl.b . . . 4 𝐵 = (Base‘𝑆)
5 psrlidm.t . . . . 5 · = (.r𝑆)
6 psrring.r . . . . 5 (𝜑𝑅 ∈ Ring)
7 psrring.i . . . . . 6 (𝜑𝐼𝑉)
8 psr1cl.z . . . . . 6 0 = (0g𝑅)
9 psr1cl.o . . . . . 6 1 = (1r𝑅)
10 psr1cl.u . . . . . 6 𝑈 = (𝑥𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))
111, 7, 6, 3, 8, 9, 10, 4psr1cl 21371 . . . . 5 (𝜑𝑈𝐵)
12 psrlidm.x . . . . 5 (𝜑𝑋𝐵)
131, 4, 5, 6, 11, 12psrmulcl 21356 . . . 4 (𝜑 → (𝑈 · 𝑋) ∈ 𝐵)
141, 2, 3, 4, 13psrelbas 21347 . . 3 (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅))
1514ffnd 6669 . 2 (𝜑 → (𝑈 · 𝑋) Fn 𝐷)
161, 2, 3, 4, 12psrelbas 21347 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
1716ffnd 6669 . 2 (𝜑𝑋 Fn 𝐷)
18 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
1911adantr 481 . . . 4 ((𝜑𝑦𝐷) → 𝑈𝐵)
2012adantr 481 . . . 4 ((𝜑𝑦𝐷) → 𝑋𝐵)
21 simpr 485 . . . 4 ((𝜑𝑦𝐷) → 𝑦𝐷)
221, 4, 18, 5, 3, 19, 20, 21psrmulval 21354 . . 3 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
23 breq1 5108 . . . . . . . 8 (𝑔 = (𝐼 × {0}) → (𝑔r𝑦 ↔ (𝐼 × {0}) ∘r𝑦))
24 fconstmpt 5694 . . . . . . . . . 10 (𝐼 × {0}) = (𝑥𝐼 ↦ 0)
253fczpsrbag 21325 . . . . . . . . . . 11 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
267, 25syl 17 . . . . . . . . . 10 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
2724, 26eqeltrid 2842 . . . . . . . . 9 (𝜑 → (𝐼 × {0}) ∈ 𝐷)
2827adantr 481 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ 𝐷)
293psrbagf 21320 . . . . . . . . . . . . 13 (𝑦𝐷𝑦:𝐼⟶ℕ0)
3029adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦𝐷) → 𝑦:𝐼⟶ℕ0)
3130ffvelcdmda 7035 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
3231nn0ge0d 12476 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → 0 ≤ (𝑦𝑥))
3332ralrimiva 3143 . . . . . . . . 9 ((𝜑𝑦𝐷) → ∀𝑥𝐼 0 ≤ (𝑦𝑥))
34 0nn0 12428 . . . . . . . . . . . 12 0 ∈ ℕ0
3534fconst6 6732 . . . . . . . . . . 11 (𝐼 × {0}):𝐼⟶ℕ0
36 ffn 6668 . . . . . . . . . . 11 ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼)
3735, 36mp1i 13 . . . . . . . . . 10 ((𝜑𝑦𝐷) → (𝐼 × {0}) Fn 𝐼)
3830ffnd 6669 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝑦 Fn 𝐼)
397adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐷) → 𝐼𝑉)
40 inidm 4178 . . . . . . . . . 10 (𝐼𝐼) = 𝐼
4134a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝐷) → 0 ∈ ℕ0)
42 fvconst2g 7151 . . . . . . . . . . 11 ((0 ∈ ℕ0𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
4341, 42sylan 580 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → ((𝐼 × {0})‘𝑥) = 0)
44 eqidd 2737 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
4537, 38, 39, 39, 40, 43, 44ofrfval 7627 . . . . . . . . 9 ((𝜑𝑦𝐷) → ((𝐼 × {0}) ∘r𝑦 ↔ ∀𝑥𝐼 0 ≤ (𝑦𝑥)))
4633, 45mpbird 256 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∘r𝑦)
4723, 28, 46elrabd 3647 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐼 × {0}) ∈ {𝑔𝐷𝑔r𝑦})
4847snssd 4769 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ⊆ {𝑔𝐷𝑔r𝑦})
4948resmptd 5994 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
5049oveq2d 7373 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
51 ringcmn 20003 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
526, 51syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5352adantr 481 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ CMnd)
54 ovex 7390 . . . . . . 7 (ℕ0m 𝐼) ∈ V
553, 54rab2ex 5292 . . . . . 6 {𝑔𝐷𝑔r𝑦} ∈ V
5655a1i 11 . . . . 5 ((𝜑𝑦𝐷) → {𝑔𝐷𝑔r𝑦} ∈ V)
576ad2antrr 724 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑅 ∈ Ring)
58 simpr 485 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
59 breq1 5108 . . . . . . . . . . 11 (𝑔 = 𝑧 → (𝑔r𝑦𝑧r𝑦))
6059elrab 3645 . . . . . . . . . 10 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↔ (𝑧𝐷𝑧r𝑦))
6158, 60sylib 217 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑧𝐷𝑧r𝑦))
6261simpld 495 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧𝐷)
631, 2, 3, 4, 19psrelbas 21347 . . . . . . . . 9 ((𝜑𝑦𝐷) → 𝑈:𝐷⟶(Base‘𝑅))
6463ffvelcdmda 7035 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧𝐷) → (𝑈𝑧) ∈ (Base‘𝑅))
6562, 64syldan 591 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑈𝑧) ∈ (Base‘𝑅))
6616ad2antrr 724 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑋:𝐷⟶(Base‘𝑅))
6721adantr 481 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑦𝐷)
683psrbagf 21320 . . . . . . . . . . 11 (𝑧𝐷𝑧:𝐼⟶ℕ0)
6962, 68syl 17 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧:𝐼⟶ℕ0)
7061simprd 496 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → 𝑧r𝑦)
713psrbagcon 21332 . . . . . . . . . 10 ((𝑦𝐷𝑧:𝐼⟶ℕ0𝑧r𝑦) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7267, 69, 70, 71syl3anc 1371 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑦f𝑧) ∈ 𝐷 ∧ (𝑦f𝑧) ∘r𝑦))
7372simpld 495 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑦f𝑧) ∈ 𝐷)
7466, 73ffvelcdmd 7036 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
752, 18ringcl 19981 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑈𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7657, 65, 74, 75syl3anc 1371 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ {𝑔𝐷𝑔r𝑦}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) ∈ (Base‘𝑅))
7776fmpttd 7063 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))):{𝑔𝐷𝑔r𝑦}⟶(Base‘𝑅))
78 eldifi 4086 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔𝐷𝑔r𝑦})
7978, 61sylan2 593 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑧𝐷𝑧r𝑦))
8079simpld 495 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑧𝐷)
81 eqeq1 2740 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0})))
8281ifbid 4509 . . . . . . . . . . 11 (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
839fvexi 6856 . . . . . . . . . . . 12 1 ∈ V
848fvexi 6856 . . . . . . . . . . . 12 0 ∈ V
8583, 84ifex 4536 . . . . . . . . . . 11 if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈ V
8682, 10, 85fvmpt 6948 . . . . . . . . . 10 (𝑧𝐷 → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
8780, 86syl 17 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 ))
88 eldifn 4087 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})})
8988adantl 482 . . . . . . . . . . 11 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})})
90 velsn 4602 . . . . . . . . . . 11 (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0}))
9189, 90sylnib 327 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0}))
9291iffalsed 4497 . . . . . . . . 9 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 )
9387, 92eqtrd 2776 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑈𝑧) = 0 )
9493oveq1d 7372 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))))
956ad2antrr 724 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring)
9678, 74sylan2 593 . . . . . . . 8 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅))
972, 18, 8ringlz 20011 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦f𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9895, 96, 97syl2anc 584 . . . . . . 7 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
9994, 98eqtrd 2776 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ({𝑔𝐷𝑔r𝑦} ∖ {(𝐼 × {0})})) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = 0 )
10099, 56suppss2 8131 . . . . 5 ((𝜑𝑦𝐷) → ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})
1013, 54rabex2 5291 . . . . . . . 8 𝐷 ∈ V
102101mptrabex 7175 . . . . . . 7 (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V
103102a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V)
104 funmpt 6539 . . . . . . 7 Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))
105104a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))))
10684a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 0 ∈ V)
107 snfi 8988 . . . . . . 7 {(𝐼 × {0})} ∈ Fin
108107a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → {(𝐼 × {0})} ∈ Fin)
109 suppssfifsupp 9320 . . . . . 6 ((((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧ ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
110103, 105, 106, 108, 100, 109syl32anc 1378 . . . . 5 ((𝜑𝑦𝐷) → (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) finSupp 0 )
1112, 8, 53, 56, 77, 100, 110gsumres 19690 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))))
1126adantr 481 . . . . . 6 ((𝜑𝑦𝐷) → 𝑅 ∈ Ring)
113 ringmnd 19974 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
114112, 113syl 17 . . . . 5 ((𝜑𝑦𝐷) → 𝑅 ∈ Mnd)
115 iftrue 4492 . . . . . . . . . 10 (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 )
116115, 10, 83fvmpt 6948 . . . . . . . . 9 ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 )
11728, 116syl 17 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑈‘(𝐼 × {0})) = 1 )
118 nn0cn 12423 . . . . . . . . . . . 12 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
119118subid1d 11501 . . . . . . . . . . 11 (𝑧 ∈ ℕ0 → (𝑧 − 0) = 𝑧)
120119adantl 482 . . . . . . . . . 10 (((𝜑𝑦𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧)
12139, 30, 41, 120caofid0r 7649 . . . . . . . . 9 ((𝜑𝑦𝐷) → (𝑦f − (𝐼 × {0})) = 𝑦)
122121fveq2d 6846 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋‘(𝑦f − (𝐼 × {0}))) = (𝑋𝑦))
123117, 122oveq12d 7375 . . . . . . 7 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = ( 1 (.r𝑅)(𝑋𝑦)))
12416ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1252, 18, 9ringlidm 19992 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋𝑦) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
126112, 124, 125syl2anc 584 . . . . . . 7 ((𝜑𝑦𝐷) → ( 1 (.r𝑅)(𝑋𝑦)) = (𝑋𝑦))
127123, 126eqtrd 2776 . . . . . 6 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) = (𝑋𝑦))
128127, 124eqeltrd 2838 . . . . 5 ((𝜑𝑦𝐷) → ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅))
129 fveq2 6842 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑈𝑧) = (𝑈‘(𝐼 × {0})))
130 oveq2 7365 . . . . . . . 8 (𝑧 = (𝐼 × {0}) → (𝑦f𝑧) = (𝑦f − (𝐼 × {0})))
131130fveq2d 6846 . . . . . . 7 (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦f𝑧)) = (𝑋‘(𝑦f − (𝐼 × {0}))))
132129, 131oveq12d 7375 . . . . . 6 (𝑧 = (𝐼 × {0}) → ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
1332, 132gsumsn 19731 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
134114, 28, 128, 133syl3anc 1371 . . . 4 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13550, 111, 1343eqtr3d 2784 . . 3 ((𝜑𝑦𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔𝐷𝑔r𝑦} ↦ ((𝑈𝑧)(.r𝑅)(𝑋‘(𝑦f𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r𝑅)(𝑋‘(𝑦f − (𝐼 × {0})))))
13622, 135, 1273eqtrd 2780 . 2 ((𝜑𝑦𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋𝑦))
13715, 17, 136eqfnfvd 6985 1 (𝜑 → (𝑈 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ccnv 5632  cres 5635  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  0cc0 11051  cle 11190  cmin 11385  cn 12153  0cn0 12413  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  CMndccmn 19562  1rcur 19913  Ringcrg 19964   mPwSer cmps 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-tset 17152  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-psr 21311
This theorem is referenced by:  psrring  21380  psr1  21381
  Copyright terms: Public domain W3C validator