Step | Hyp | Ref
| Expression |
1 | | psrring.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | psr1cl.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
4 | | psr1cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
5 | | psrlidm.t |
. . . . 5
⊢ · =
(.r‘𝑆) |
6 | | psrring.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | | psrring.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
8 | | psr1cl.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
9 | | psr1cl.o |
. . . . . 6
⊢ 1 =
(1r‘𝑅) |
10 | | psr1cl.u |
. . . . . 6
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
11 | 1, 7, 6, 3, 8, 9, 10, 4 | psr1cl 20927 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
12 | | psrlidm.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
13 | 1, 4, 5, 6, 11, 12 | psrmulcl 20913 |
. . . 4
⊢ (𝜑 → (𝑈 · 𝑋) ∈ 𝐵) |
14 | 1, 2, 3, 4, 13 | psrelbas 20904 |
. . 3
⊢ (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅)) |
15 | 14 | ffnd 6546 |
. 2
⊢ (𝜑 → (𝑈 · 𝑋) Fn 𝐷) |
16 | 1, 2, 3, 4, 12 | psrelbas 20904 |
. . 3
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
17 | 16 | ffnd 6546 |
. 2
⊢ (𝜑 → 𝑋 Fn 𝐷) |
18 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
19 | 11 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈 ∈ 𝐵) |
20 | 12 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) |
21 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) |
22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 20911 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
23 | | breq1 5056 |
. . . . . . . 8
⊢ (𝑔 = (𝐼 × {0}) → (𝑔 ∘r ≤ 𝑦 ↔ (𝐼 × {0}) ∘r ≤ 𝑦)) |
24 | | fconstmpt 5611 |
. . . . . . . . . 10
⊢ (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0) |
25 | 3 | fczpsrbag 20882 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
26 | 7, 25 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
27 | 24, 26 | eqeltrid 2842 |
. . . . . . . . 9
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) |
28 | 27 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ 𝐷) |
29 | 3 | psrbagf 20877 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0) |
30 | 29 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) |
31 | 30 | ffvelrnda 6904 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) |
32 | 31 | nn0ge0d 12153 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝑦‘𝑥)) |
33 | 32 | ralrimiva 3105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥)) |
34 | | 0nn0 12105 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 |
35 | 34 | fconst6 6609 |
. . . . . . . . . . 11
⊢ (𝐼 × {0}):𝐼⟶ℕ0 |
36 | | ffn 6545 |
. . . . . . . . . . 11
⊢ ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼) |
37 | 35, 36 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) Fn 𝐼) |
38 | 30 | ffnd 6546 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 Fn 𝐼) |
39 | 7 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
40 | | inidm 4133 |
. . . . . . . . . 10
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
41 | 34 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈
ℕ0) |
42 | | fvconst2g 7017 |
. . . . . . . . . . 11
⊢ ((0
∈ ℕ0 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) |
43 | 41, 42 | sylan 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) |
44 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) = (𝑦‘𝑥)) |
45 | 37, 38, 39, 39, 40, 43, 44 | ofrfval 7478 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐼 × {0}) ∘r ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥))) |
46 | 33, 45 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∘r ≤ 𝑦) |
47 | 23, 28, 46 | elrabd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
48 | 47 | snssd 4722 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
49 | 48 | resmptd 5908 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) |
50 | 49 | oveq2d 7229 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
51 | | ringcmn 19599 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
52 | 6, 51 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
53 | 52 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ CMnd) |
54 | | ovex 7246 |
. . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V |
55 | 3, 54 | rab2ex 5228 |
. . . . . 6
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V |
56 | 55 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V) |
57 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑅 ∈ Ring) |
58 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
59 | | breq1 5056 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑧 → (𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦)) |
60 | 59 | elrab 3602 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↔ (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
61 | 58, 60 | sylib 221 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
62 | 61 | simpld 498 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ 𝐷) |
63 | 1, 2, 3, 4, 19 | psrelbas 20904 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈:𝐷⟶(Base‘𝑅)) |
64 | 63 | ffvelrnda 6904 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ 𝐷) → (𝑈‘𝑧) ∈ (Base‘𝑅)) |
65 | 62, 64 | syldan 594 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑈‘𝑧) ∈ (Base‘𝑅)) |
66 | 16 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑋:𝐷⟶(Base‘𝑅)) |
67 | 21 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑦 ∈ 𝐷) |
68 | 3 | psrbagf 20877 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) |
69 | 62, 68 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧:𝐼⟶ℕ0) |
70 | 61 | simprd 499 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∘r ≤ 𝑦) |
71 | 3 | psrbagcon 20889 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧:𝐼⟶ℕ0 ∧ 𝑧 ∘r ≤ 𝑦) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
72 | 67, 69, 70, 71 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) |
73 | 72 | simpld 498 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑦 ∘f − 𝑧) ∈ 𝐷) |
74 | 66, 73 | ffvelrnd 6905 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) |
75 | 2, 18 | ringcl 19579 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑈‘𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
76 | 57, 65, 74, 75 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) |
77 | 76 | fmpttd 6932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}⟶(Base‘𝑅)) |
78 | | eldifi 4041 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) |
79 | 78, 61 | sylan2 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) |
80 | 79 | simpld 498 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑧 ∈ 𝐷) |
81 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0}))) |
82 | 81 | ifbid 4462 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
83 | 9 | fvexi 6731 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
84 | 8 | fvexi 6731 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
85 | 83, 84 | ifex 4489 |
. . . . . . . . . . 11
⊢ if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈
V |
86 | 82, 10, 85 | fvmpt 6818 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐷 → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
87 | 80, 86 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) |
88 | | eldifn 4042 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})}) |
89 | 88 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})}) |
90 | | velsn 4557 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0})) |
91 | 89, 90 | sylnib 331 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0})) |
92 | 91 | iffalsed 4450 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 ) |
93 | 87, 92 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = 0 ) |
94 | 93 | oveq1d 7228 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) |
95 | 6 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring) |
96 | 78, 74 | sylan2 596 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) |
97 | 2, 18, 8 | ringlz 19605 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
98 | 95, 96, 97 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
99 | 94, 98 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) |
100 | 99, 56 | suppss2 7942 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})}) |
101 | 3, 54 | rabex2 5227 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
102 | 101 | mptrabex 7041 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V |
103 | 102 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V) |
104 | | funmpt 6418 |
. . . . . . 7
⊢ Fun
(𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) |
105 | 104 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) |
106 | 84 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈ V) |
107 | | snfi 8721 |
. . . . . . 7
⊢ {(𝐼 × {0})} ∈
Fin |
108 | 107 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ∈ Fin) |
109 | | suppssfifsupp 9000 |
. . . . . 6
⊢ ((((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧
((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
110 | 103, 105,
106, 108, 100, 109 | syl32anc 1380 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) |
111 | 2, 8, 53, 56, 77, 100, 110 | gsumres 19298 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) |
112 | 6 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Ring) |
113 | | ringmnd 19572 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
114 | 112, 113 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Mnd) |
115 | | iftrue 4445 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 ) |
116 | 115, 10, 83 | fvmpt 6818 |
. . . . . . . . 9
⊢ ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 ) |
117 | 28, 116 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝐼 × {0})) = 1 ) |
118 | | nn0cn 12100 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) |
119 | 118 | subid1d 11178 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ0
→ (𝑧 − 0) =
𝑧) |
120 | 119 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧) |
121 | 39, 30, 41, 120 | caofid0r 7500 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∘f − (𝐼 × {0})) = 𝑦) |
122 | 121 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘(𝑦 ∘f − (𝐼 × {0}))) = (𝑋‘𝑦)) |
123 | 117, 122 | oveq12d 7231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = ( 1
(.r‘𝑅)(𝑋‘𝑦))) |
124 | 16 | ffvelrnda 6904 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) |
125 | 2, 18, 9 | ringlidm 19589 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑦) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) |
126 | 112, 124,
125 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) |
127 | 123, 126 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = (𝑋‘𝑦)) |
128 | 127, 124 | eqeltrd 2838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) |
129 | | fveq2 6717 |
. . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑈‘𝑧) = (𝑈‘(𝐼 × {0}))) |
130 | | oveq2 7221 |
. . . . . . . 8
⊢ (𝑧 = (𝐼 × {0}) → (𝑦 ∘f − 𝑧) = (𝑦 ∘f − (𝐼 × {0}))) |
131 | 130 | fveq2d 6721 |
. . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦 ∘f − 𝑧)) = (𝑋‘(𝑦 ∘f − (𝐼 ×
{0})))) |
132 | 129, 131 | oveq12d 7231 |
. . . . . 6
⊢ (𝑧 = (𝐼 × {0}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
133 | 2, 132 | gsumsn 19339 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
134 | 114, 28, 128, 133 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
135 | 50, 111, 134 | 3eqtr3d 2785 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) |
136 | 22, 135, 127 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋‘𝑦)) |
137 | 15, 17, 136 | eqfnfvd 6855 |
1
⊢ (𝜑 → (𝑈 · 𝑋) = 𝑋) |