| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | psrring.s | . . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 2 |  | eqid 2737 | . . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 |  | psr1cl.d | . . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 4 |  | psr1cl.b | . . . 4
⊢ 𝐵 = (Base‘𝑆) | 
| 5 |  | psrlidm.t | . . . . 5
⊢  · =
(.r‘𝑆) | 
| 6 |  | psrring.r | . . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 7 |  | psrring.i | . . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 8 |  | psr1cl.z | . . . . . 6
⊢  0 =
(0g‘𝑅) | 
| 9 |  | psr1cl.o | . . . . . 6
⊢  1 =
(1r‘𝑅) | 
| 10 |  | psr1cl.u | . . . . . 6
⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) | 
| 11 | 1, 7, 6, 3, 8, 9, 10, 4 | psr1cl 21981 | . . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐵) | 
| 12 |  | psrlidm.x | . . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 13 | 1, 4, 5, 6, 11, 12 | psrmulcl 21966 | . . . 4
⊢ (𝜑 → (𝑈 · 𝑋) ∈ 𝐵) | 
| 14 | 1, 2, 3, 4, 13 | psrelbas 21954 | . . 3
⊢ (𝜑 → (𝑈 · 𝑋):𝐷⟶(Base‘𝑅)) | 
| 15 | 14 | ffnd 6737 | . 2
⊢ (𝜑 → (𝑈 · 𝑋) Fn 𝐷) | 
| 16 | 1, 2, 3, 4, 12 | psrelbas 21954 | . . 3
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) | 
| 17 | 16 | ffnd 6737 | . 2
⊢ (𝜑 → 𝑋 Fn 𝐷) | 
| 18 |  | eqid 2737 | . . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 19 | 11 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈 ∈ 𝐵) | 
| 20 | 12 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑋 ∈ 𝐵) | 
| 21 |  | simpr 484 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ 𝐷) | 
| 22 | 1, 4, 18, 5, 3, 19, 20, 21 | psrmulval 21964 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) | 
| 23 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑔 = (𝐼 × {0}) → (𝑔 ∘r ≤ 𝑦 ↔ (𝐼 × {0}) ∘r ≤ 𝑦)) | 
| 24 |  | fconstmpt 5747 | . . . . . . . . . 10
⊢ (𝐼 × {0}) = (𝑥 ∈ 𝐼 ↦ 0) | 
| 25 | 3 | fczpsrbag 21941 | . . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) | 
| 26 | 7, 25 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) | 
| 27 | 24, 26 | eqeltrid 2845 | . . . . . . . . 9
⊢ (𝜑 → (𝐼 × {0}) ∈ 𝐷) | 
| 28 | 27 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ 𝐷) | 
| 29 | 3 | psrbagf 21938 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 → 𝑦:𝐼⟶ℕ0) | 
| 30 | 29 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦:𝐼⟶ℕ0) | 
| 31 | 30 | ffvelcdmda 7104 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) ∈
ℕ0) | 
| 32 | 31 | nn0ge0d 12590 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝑦‘𝑥)) | 
| 33 | 32 | ralrimiva 3146 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥)) | 
| 34 |  | 0nn0 12541 | . . . . . . . . . . . 12
⊢ 0 ∈
ℕ0 | 
| 35 | 34 | fconst6 6798 | . . . . . . . . . . 11
⊢ (𝐼 × {0}):𝐼⟶ℕ0 | 
| 36 |  | ffn 6736 | . . . . . . . . . . 11
⊢ ((𝐼 × {0}):𝐼⟶ℕ0 → (𝐼 × {0}) Fn 𝐼) | 
| 37 | 35, 36 | mp1i 13 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) Fn 𝐼) | 
| 38 | 30 | ffnd 6737 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 Fn 𝐼) | 
| 39 | 7 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐼 ∈ 𝑉) | 
| 40 |  | inidm 4227 | . . . . . . . . . 10
⊢ (𝐼 ∩ 𝐼) = 𝐼 | 
| 41 | 34 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈
ℕ0) | 
| 42 |  | fvconst2g 7222 | . . . . . . . . . . 11
⊢ ((0
∈ ℕ0 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) | 
| 43 | 41, 42 | sylan 580 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {0})‘𝑥) = 0) | 
| 44 |  | eqidd 2738 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝑦‘𝑥) = (𝑦‘𝑥)) | 
| 45 | 37, 38, 39, 39, 40, 43, 44 | ofrfval 7707 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝐼 × {0}) ∘r ≤ 𝑦 ↔ ∀𝑥 ∈ 𝐼 0 ≤ (𝑦‘𝑥))) | 
| 46 | 33, 45 | mpbird 257 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∘r ≤ 𝑦) | 
| 47 | 23, 28, 46 | elrabd 3694 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝐼 × {0}) ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) | 
| 48 | 47 | snssd 4809 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ⊆ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) | 
| 49 | 48 | resmptd 6058 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})}) = (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) | 
| 50 | 49 | oveq2d 7447 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) | 
| 51 |  | ringcmn 20279 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | 
| 52 | 6, 51 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) | 
| 53 | 52 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ CMnd) | 
| 54 |  | ovex 7464 | . . . . . . 7
⊢
(ℕ0 ↑m 𝐼) ∈ V | 
| 55 | 3, 54 | rab2ex 5342 | . . . . . 6
⊢ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V | 
| 56 | 55 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∈ V) | 
| 57 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑅 ∈ Ring) | 
| 58 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) | 
| 59 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (𝑔 = 𝑧 → (𝑔 ∘r ≤ 𝑦 ↔ 𝑧 ∘r ≤ 𝑦)) | 
| 60 | 59 | elrab 3692 | . . . . . . . . . 10
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↔ (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) | 
| 61 | 58, 60 | sylib 218 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) | 
| 62 | 61 | simpld 494 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∈ 𝐷) | 
| 63 | 1, 2, 3, 4, 19 | psrelbas 21954 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑈:𝐷⟶(Base‘𝑅)) | 
| 64 | 63 | ffvelcdmda 7104 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ 𝐷) → (𝑈‘𝑧) ∈ (Base‘𝑅)) | 
| 65 | 62, 64 | syldan 591 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑈‘𝑧) ∈ (Base‘𝑅)) | 
| 66 | 16 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑋:𝐷⟶(Base‘𝑅)) | 
| 67 | 21 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑦 ∈ 𝐷) | 
| 68 | 3 | psrbagf 21938 | . . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) | 
| 69 | 62, 68 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧:𝐼⟶ℕ0) | 
| 70 | 61 | simprd 495 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → 𝑧 ∘r ≤ 𝑦) | 
| 71 | 3 | psrbagcon 21945 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐷 ∧ 𝑧:𝐼⟶ℕ0 ∧ 𝑧 ∘r ≤ 𝑦) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) | 
| 72 | 67, 69, 70, 71 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑦 ∘f − 𝑧) ∈ 𝐷 ∧ (𝑦 ∘f − 𝑧) ∘r ≤ 𝑦)) | 
| 73 | 72 | simpld 494 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑦 ∘f − 𝑧) ∈ 𝐷) | 
| 74 | 66, 73 | ffvelcdmd 7105 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) | 
| 75 | 2, 18 | ringcl 20247 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑈‘𝑧) ∈ (Base‘𝑅) ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) | 
| 76 | 57, 65, 74, 75 | syl3anc 1373 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) ∈ (Base‘𝑅)) | 
| 77 | 76 | fmpttd 7135 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))):{𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}⟶(Base‘𝑅)) | 
| 78 |  | eldifi 4131 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → 𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦}) | 
| 79 | 78, 61 | sylan2 593 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑧 ∈ 𝐷 ∧ 𝑧 ∘r ≤ 𝑦)) | 
| 80 | 79 | simpld 494 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑧 ∈ 𝐷) | 
| 81 |  | eqeq1 2741 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = (𝐼 × {0}) ↔ 𝑧 = (𝐼 × {0}))) | 
| 82 | 81 | ifbid 4549 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) | 
| 83 | 9 | fvexi 6920 | . . . . . . . . . . . 12
⊢  1 ∈
V | 
| 84 | 8 | fvexi 6920 | . . . . . . . . . . . 12
⊢  0 ∈
V | 
| 85 | 83, 84 | ifex 4576 | . . . . . . . . . . 11
⊢ if(𝑧 = (𝐼 × {0}), 1 , 0 ) ∈
V | 
| 86 | 82, 10, 85 | fvmpt 7016 | . . . . . . . . . 10
⊢ (𝑧 ∈ 𝐷 → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) | 
| 87 | 80, 86 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = if(𝑧 = (𝐼 × {0}), 1 , 0 )) | 
| 88 |  | eldifn 4132 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})}) → ¬ 𝑧 ∈ {(𝐼 × {0})}) | 
| 89 | 88 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 ∈ {(𝐼 × {0})}) | 
| 90 |  | velsn 4642 | . . . . . . . . . . 11
⊢ (𝑧 ∈ {(𝐼 × {0})} ↔ 𝑧 = (𝐼 × {0})) | 
| 91 | 89, 90 | sylnib 328 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ¬ 𝑧 = (𝐼 × {0})) | 
| 92 | 91 | iffalsed 4536 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → if(𝑧 = (𝐼 × {0}), 1 , 0 ) = 0 ) | 
| 93 | 87, 92 | eqtrd 2777 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑈‘𝑧) = 0 ) | 
| 94 | 93 | oveq1d 7446 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) | 
| 95 | 6 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → 𝑅 ∈ Ring) | 
| 96 | 78, 74 | sylan2 593 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) | 
| 97 | 2, 18, 8 | ringlz 20290 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘(𝑦 ∘f − 𝑧)) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) | 
| 98 | 95, 96, 97 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ( 0 (.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) | 
| 99 | 94, 98 | eqtrd 2777 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ({𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ∖ {(𝐼 × {0})})) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = 0 ) | 
| 100 | 99, 56 | suppss2 8225 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})}) | 
| 101 | 3, 54 | rabex2 5341 | . . . . . . . 8
⊢ 𝐷 ∈ V | 
| 102 | 101 | mptrabex 7245 | . . . . . . 7
⊢ (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V | 
| 103 | 102 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V) | 
| 104 |  | funmpt 6604 | . . . . . . 7
⊢ Fun
(𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) | 
| 105 | 104 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) | 
| 106 | 84 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 0 ∈ V) | 
| 107 |  | snfi 9083 | . . . . . . 7
⊢ {(𝐼 × {0})} ∈
Fin | 
| 108 | 107 | a1i 11 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → {(𝐼 × {0})} ∈ Fin) | 
| 109 |  | suppssfifsupp 9420 | . . . . . 6
⊢ ((((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∈ V ∧ Fun (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ∧ 0 ∈ V) ∧ ({(𝐼 × {0})} ∈ Fin ∧
((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) supp 0 ) ⊆ {(𝐼 × {0})})) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) | 
| 110 | 103, 105,
106, 108, 100, 109 | syl32anc 1380 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) finSupp 0 ) | 
| 111 | 2, 8, 53, 56, 77, 100, 110 | gsumres 19931 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg ((𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))) ↾ {(𝐼 × {0})})) = (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧)))))) | 
| 112 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Ring) | 
| 113 |  | ringmnd 20240 | . . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | 
| 114 | 112, 113 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑅 ∈ Mnd) | 
| 115 |  | iftrue 4531 | . . . . . . . . . 10
⊢ (𝑥 = (𝐼 × {0}) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) = 1 ) | 
| 116 | 115, 10, 83 | fvmpt 7016 | . . . . . . . . 9
⊢ ((𝐼 × {0}) ∈ 𝐷 → (𝑈‘(𝐼 × {0})) = 1 ) | 
| 117 | 28, 116 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑈‘(𝐼 × {0})) = 1 ) | 
| 118 |  | nn0cn 12536 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) | 
| 119 | 118 | subid1d 11609 | . . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ0
→ (𝑧 − 0) =
𝑧) | 
| 120 | 119 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑧 ∈ ℕ0) → (𝑧 − 0) = 𝑧) | 
| 121 | 39, 30, 41, 120 | caofid0r 7731 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∘f − (𝐼 × {0})) = 𝑦) | 
| 122 | 121 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘(𝑦 ∘f − (𝐼 × {0}))) = (𝑋‘𝑦)) | 
| 123 | 117, 122 | oveq12d 7449 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = ( 1
(.r‘𝑅)(𝑋‘𝑦))) | 
| 124 | 16 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑋‘𝑦) ∈ (Base‘𝑅)) | 
| 125 | 2, 18, 9 | ringlidm 20266 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑦) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) | 
| 126 | 112, 124,
125 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ( 1 (.r‘𝑅)(𝑋‘𝑦)) = (𝑋‘𝑦)) | 
| 127 | 123, 126 | eqtrd 2777 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) = (𝑋‘𝑦)) | 
| 128 | 127, 124 | eqeltrd 2841 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) | 
| 129 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑈‘𝑧) = (𝑈‘(𝐼 × {0}))) | 
| 130 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑧 = (𝐼 × {0}) → (𝑦 ∘f − 𝑧) = (𝑦 ∘f − (𝐼 × {0}))) | 
| 131 | 130 | fveq2d 6910 | . . . . . . 7
⊢ (𝑧 = (𝐼 × {0}) → (𝑋‘(𝑦 ∘f − 𝑧)) = (𝑋‘(𝑦 ∘f − (𝐼 ×
{0})))) | 
| 132 | 129, 131 | oveq12d 7449 | . . . . . 6
⊢ (𝑧 = (𝐼 × {0}) → ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) | 
| 133 | 2, 132 | gsumsn 19972 | . . . . 5
⊢ ((𝑅 ∈ Mnd ∧ (𝐼 × {0}) ∈ 𝐷 ∧ ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 × {0})))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) | 
| 134 | 114, 28, 128, 133 | syl3anc 1373 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {(𝐼 × {0})} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) | 
| 135 | 50, 111, 134 | 3eqtr3d 2785 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → (𝑅 Σg (𝑧 ∈ {𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑦} ↦ ((𝑈‘𝑧)(.r‘𝑅)(𝑋‘(𝑦 ∘f − 𝑧))))) = ((𝑈‘(𝐼 × {0}))(.r‘𝑅)(𝑋‘(𝑦 ∘f − (𝐼 ×
{0}))))) | 
| 136 | 22, 135, 127 | 3eqtrd 2781 | . 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ((𝑈 · 𝑋)‘𝑦) = (𝑋‘𝑦)) | 
| 137 | 15, 17, 136 | eqfnfvd 7054 | 1
⊢ (𝜑 → (𝑈 · 𝑋) = 𝑋) |