| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5290 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rab2ex 5292 mapfien2 9336 cantnffval 9592 nqex 10852 gsumvalx 18585 psgnfval 19414 odval 19448 sylow1lem2 19513 sylow3lem6 19546 ablfaclem1 20001 psrass1lem 21874 psrbas 21875 psrelbas 21876 psrmulfval 21885 psrmulcllem 21887 psrvscaval 21892 psr0cl 21894 psr0lid 21895 psrnegcl 21896 psrlinv 21897 psr1cl 21903 psrlidm 21904 psrdi 21907 psrdir 21908 psrass23l 21909 psrcom 21910 psrass23 21911 mvrval 21924 mplsubglem 21941 mpllsslem 21942 mplsubrglem 21946 mplvscaval 21958 mplmon 21975 mplmonmul 21976 mplcoe1 21977 ltbval 21983 mplmon2 22001 evlslem2 22019 evlslem3 22020 evlslem1 22022 psdval 22079 rrxmet 25341 mdegldg 26004 lgamgulmlem5 26976 lgamgulmlem6 26977 lgamgulm2 26979 lgamcvglem 26983 upgrres1lem1 29289 frgrwopreg1 30297 dlwwlknondlwlknonen 30345 nsgmgc 33376 nsgqusf1o 33380 ssdifidl 33421 eulerpartlem1 34351 eulerpartlemt 34355 eulerpartgbij 34356 ballotlemoex 34470 satffunlem2lem2 35386 mapdunirnN 41637 mplmapghm 42537 evlsvvvallem2 42543 selvvvval 42566 evlsmhpvvval 42576 pwfi2en 43079 smfresal 46779 oddiadd 48155 2zrngadd 48224 2zrngmul 48232 |
| Copyright terms: Public domain | W3C validator |