![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 5358 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: rab2ex 5360 mapfien2 9478 cantnffval 9732 nqex 10992 gsumvalx 18714 psgnfval 19542 odval 19576 sylow1lem2 19641 sylow3lem6 19674 ablfaclem1 20129 psrass1lem 21975 psrbas 21976 psrelbas 21977 psrmulfval 21986 psrmulcllem 21988 psrvscaval 21993 psr0cl 21995 psr0lid 21996 psrnegcl 21997 psrlinv 21998 psr1cl 22004 psrlidm 22005 psrdi 22008 psrdir 22009 psrass23l 22010 psrcom 22011 psrass23 22012 mvrval 22025 mplsubglem 22042 mpllsslem 22043 mplsubrglem 22047 mplvscaval 22059 mplmon 22076 mplmonmul 22077 mplcoe1 22078 ltbval 22084 mplmon2 22108 evlslem2 22126 evlslem3 22127 evlslem1 22129 psdval 22186 rrxmet 25461 mdegldg 26125 lgamgulmlem5 27094 lgamgulmlem6 27095 lgamgulm2 27097 lgamcvglem 27101 upgrres1lem1 29344 frgrwopreg1 30350 dlwwlknondlwlknonen 30398 nsgmgc 33405 nsgqusf1o 33409 ssdifidl 33450 eulerpartlem1 34332 eulerpartlemt 34336 eulerpartgbij 34337 ballotlemoex 34450 satffunlem2lem2 35374 mapdunirnN 41607 mplmapghm 42511 evlsvvvallem2 42517 selvvvval 42540 evlsmhpvvval 42550 pwfi2en 43054 smfresal 46709 oddiadd 47897 2zrngadd 47966 2zrngmul 47974 |
Copyright terms: Public domain | W3C validator |