Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 5252 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rab2ex 5254 mapfien2 9098 cantnffval 9351 nqex 10610 gsumvalx 18275 psgnfval 19023 odval 19057 sylow1lem2 19119 sylow3lem6 19152 ablfaclem1 19603 psrass1lemOLD 21053 psrass1lem 21056 psrbas 21057 psrelbas 21058 psrmulfval 21064 psrmulcllem 21066 psrvscaval 21071 psr0cl 21073 psr0lid 21074 psrnegcl 21075 psrlinv 21076 psr1cl 21081 psrlidm 21082 psrdi 21085 psrdir 21086 psrass23l 21087 psrcom 21088 psrass23 21089 mvrval 21100 mplsubglem 21115 mpllsslem 21116 mplsubrglem 21120 mplvscaval 21130 mplmon 21146 mplmonmul 21147 mplcoe1 21148 ltbval 21154 mplmon2 21179 evlslem2 21199 evlslem3 21200 evlslem1 21202 rrxmet 24477 mdegldg 25136 lgamgulmlem5 26087 lgamgulmlem6 26088 lgamgulm2 26090 lgamcvglem 26094 upgrres1lem1 27579 frgrwopreg1 28583 dlwwlknondlwlknonen 28631 nsgmgc 31499 nsgqusf1o 31503 eulerpartlem1 32234 eulerpartlemt 32238 eulerpartgbij 32239 ballotlemoex 32352 satffunlem2lem2 33268 mapdunirnN 39591 pwfi2en 40838 smfresal 44209 oddiadd 45256 2zrngadd 45383 2zrngmul 45391 |
Copyright terms: Public domain | W3C validator |