| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5276 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4549 |
| This theorem is referenced by: rab2ex 5278 mapfien2 9293 cantnffval 9553 nqex 10814 gsumvalx 18584 psgnfval 19412 odval 19446 sylow1lem2 19511 sylow3lem6 19544 ablfaclem1 19999 psrass1lem 21869 psrbas 21870 psrelbas 21871 psrmulfval 21880 psrmulcllem 21882 psrvscaval 21887 psr0cl 21889 psr0lid 21890 psrnegcl 21891 psrlinv 21892 psr1cl 21898 psrlidm 21899 psrdi 21902 psrdir 21903 psrass23l 21904 psrcom 21905 psrass23 21906 mvrval 21919 mplsubglem 21936 mpllsslem 21937 mplsubrglem 21941 mplvscaval 21953 mplmon 21970 mplmonmul 21971 mplcoe1 21972 ltbval 21978 mplmon2 21996 evlslem2 22014 evlslem3 22015 evlslem1 22017 psdval 22074 rrxmet 25335 mdegldg 25998 lgamgulmlem5 26970 lgamgulmlem6 26971 lgamgulm2 26973 lgamcvglem 26977 upgrres1lem1 29287 frgrwopreg1 30298 dlwwlknondlwlknonen 30346 nsgmgc 33377 nsgqusf1o 33381 ssdifidl 33422 issply 33584 esplympl 33588 esplyfv 33591 eulerpartlem1 34380 eulerpartlemt 34384 eulerpartgbij 34385 ballotlemoex 34499 satffunlem2lem2 35450 mapdunirnN 41697 mplmapghm 42597 evlsvvvallem2 42603 selvvvval 42626 evlsmhpvvval 42636 pwfi2en 43138 smfresal 46834 oddiadd 48213 2zrngadd 48282 2zrngmul 48290 |
| Copyright terms: Public domain | W3C validator |