| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5290 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-pw 4561 |
| This theorem is referenced by: rab2ex 5292 mapfien2 9336 cantnffval 9592 nqex 10852 gsumvalx 18579 psgnfval 19406 odval 19440 sylow1lem2 19505 sylow3lem6 19538 ablfaclem1 19993 psrass1lem 21817 psrbas 21818 psrelbas 21819 psrmulfval 21828 psrmulcllem 21830 psrvscaval 21835 psr0cl 21837 psr0lid 21838 psrnegcl 21839 psrlinv 21840 psr1cl 21846 psrlidm 21847 psrdi 21850 psrdir 21851 psrass23l 21852 psrcom 21853 psrass23 21854 mvrval 21867 mplsubglem 21884 mpllsslem 21885 mplsubrglem 21889 mplvscaval 21901 mplmon 21918 mplmonmul 21919 mplcoe1 21920 ltbval 21926 mplmon2 21944 evlslem2 21962 evlslem3 21963 evlslem1 21965 psdval 22022 rrxmet 25284 mdegldg 25947 lgamgulmlem5 26919 lgamgulmlem6 26920 lgamgulm2 26922 lgamcvglem 26926 upgrres1lem1 29212 frgrwopreg1 30220 dlwwlknondlwlknonen 30268 nsgmgc 33356 nsgqusf1o 33360 ssdifidl 33401 eulerpartlem1 34331 eulerpartlemt 34335 eulerpartgbij 34336 ballotlemoex 34450 satffunlem2lem2 35366 mapdunirnN 41617 mplmapghm 42517 evlsvvvallem2 42523 selvvvval 42546 evlsmhpvvval 42556 pwfi2en 43059 smfresal 46759 oddiadd 48135 2zrngadd 48204 2zrngmul 48212 |
| Copyright terms: Public domain | W3C validator |