| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5279 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: rab2ex 5281 mapfien2 9299 cantnffval 9559 nqex 10817 gsumvalx 18550 psgnfval 19379 odval 19413 sylow1lem2 19478 sylow3lem6 19511 ablfaclem1 19966 psrass1lem 21839 psrbas 21840 psrelbas 21841 psrmulfval 21850 psrmulcllem 21852 psrvscaval 21857 psr0cl 21859 psr0lid 21860 psrnegcl 21861 psrlinv 21862 psr1cl 21868 psrlidm 21869 psrdi 21872 psrdir 21873 psrass23l 21874 psrcom 21875 psrass23 21876 mvrval 21889 mplsubglem 21906 mpllsslem 21907 mplsubrglem 21911 mplvscaval 21923 mplmon 21940 mplmonmul 21941 mplcoe1 21942 ltbval 21948 mplmon2 21966 evlslem2 21984 evlslem3 21985 evlslem1 21987 psdval 22044 rrxmet 25306 mdegldg 25969 lgamgulmlem5 26941 lgamgulmlem6 26942 lgamgulm2 26944 lgamcvglem 26948 upgrres1lem1 29254 frgrwopreg1 30262 dlwwlknondlwlknonen 30310 nsgmgc 33349 nsgqusf1o 33353 ssdifidl 33394 eulerpartlem1 34335 eulerpartlemt 34339 eulerpartgbij 34340 ballotlemoex 34454 satffunlem2lem2 35379 mapdunirnN 41629 mplmapghm 42529 evlsvvvallem2 42535 selvvvval 42558 evlsmhpvvval 42568 pwfi2en 43070 smfresal 46769 oddiadd 48158 2zrngadd 48227 2zrngmul 48235 |
| Copyright terms: Public domain | W3C validator |