| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5320 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: rab2ex 5322 mapfien2 9431 cantnffval 9685 nqex 10945 gsumvalx 18658 psgnfval 19486 odval 19520 sylow1lem2 19585 sylow3lem6 19618 ablfaclem1 20073 psrass1lem 21906 psrbas 21907 psrelbas 21908 psrmulfval 21917 psrmulcllem 21919 psrvscaval 21924 psr0cl 21926 psr0lid 21927 psrnegcl 21928 psrlinv 21929 psr1cl 21935 psrlidm 21936 psrdi 21939 psrdir 21940 psrass23l 21941 psrcom 21942 psrass23 21943 mvrval 21956 mplsubglem 21973 mpllsslem 21974 mplsubrglem 21978 mplvscaval 21990 mplmon 22007 mplmonmul 22008 mplcoe1 22009 ltbval 22015 mplmon2 22033 evlslem2 22051 evlslem3 22052 evlslem1 22054 psdval 22111 rrxmet 25378 mdegldg 26041 lgamgulmlem5 27012 lgamgulmlem6 27013 lgamgulm2 27015 lgamcvglem 27019 upgrres1lem1 29254 frgrwopreg1 30265 dlwwlknondlwlknonen 30313 nsgmgc 33375 nsgqusf1o 33379 ssdifidl 33420 eulerpartlem1 34328 eulerpartlemt 34332 eulerpartgbij 34333 ballotlemoex 34447 satffunlem2lem2 35370 mapdunirnN 41611 mplmapghm 42529 evlsvvvallem2 42535 selvvvval 42558 evlsmhpvvval 42568 pwfi2en 43072 smfresal 46760 oddiadd 48048 2zrngadd 48117 2zrngmul 48125 |
| Copyright terms: Public domain | W3C validator |