| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5310 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: rab2ex 5312 mapfien2 9421 cantnffval 9677 nqex 10937 gsumvalx 18654 psgnfval 19481 odval 19515 sylow1lem2 19580 sylow3lem6 19613 ablfaclem1 20068 psrass1lem 21892 psrbas 21893 psrelbas 21894 psrmulfval 21903 psrmulcllem 21905 psrvscaval 21910 psr0cl 21912 psr0lid 21913 psrnegcl 21914 psrlinv 21915 psr1cl 21921 psrlidm 21922 psrdi 21925 psrdir 21926 psrass23l 21927 psrcom 21928 psrass23 21929 mvrval 21942 mplsubglem 21959 mpllsslem 21960 mplsubrglem 21964 mplvscaval 21976 mplmon 21993 mplmonmul 21994 mplcoe1 21995 ltbval 22001 mplmon2 22019 evlslem2 22037 evlslem3 22038 evlslem1 22040 psdval 22097 rrxmet 25360 mdegldg 26023 lgamgulmlem5 26995 lgamgulmlem6 26996 lgamgulm2 26998 lgamcvglem 27002 upgrres1lem1 29288 frgrwopreg1 30299 dlwwlknondlwlknonen 30347 nsgmgc 33427 nsgqusf1o 33431 ssdifidl 33472 eulerpartlem1 34399 eulerpartlemt 34403 eulerpartgbij 34404 ballotlemoex 34518 satffunlem2lem2 35428 mapdunirnN 41669 mplmapghm 42579 evlsvvvallem2 42585 selvvvval 42608 evlsmhpvvval 42618 pwfi2en 43121 smfresal 46817 oddiadd 48149 2zrngadd 48218 2zrngmul 48226 |
| Copyright terms: Public domain | W3C validator |