| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5298 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: rab2ex 5300 mapfien2 9367 cantnffval 9623 nqex 10883 gsumvalx 18610 psgnfval 19437 odval 19471 sylow1lem2 19536 sylow3lem6 19569 ablfaclem1 20024 psrass1lem 21848 psrbas 21849 psrelbas 21850 psrmulfval 21859 psrmulcllem 21861 psrvscaval 21866 psr0cl 21868 psr0lid 21869 psrnegcl 21870 psrlinv 21871 psr1cl 21877 psrlidm 21878 psrdi 21881 psrdir 21882 psrass23l 21883 psrcom 21884 psrass23 21885 mvrval 21898 mplsubglem 21915 mpllsslem 21916 mplsubrglem 21920 mplvscaval 21932 mplmon 21949 mplmonmul 21950 mplcoe1 21951 ltbval 21957 mplmon2 21975 evlslem2 21993 evlslem3 21994 evlslem1 21996 psdval 22053 rrxmet 25315 mdegldg 25978 lgamgulmlem5 26950 lgamgulmlem6 26951 lgamgulm2 26953 lgamcvglem 26957 upgrres1lem1 29243 frgrwopreg1 30254 dlwwlknondlwlknonen 30302 nsgmgc 33390 nsgqusf1o 33394 ssdifidl 33435 eulerpartlem1 34365 eulerpartlemt 34369 eulerpartgbij 34370 ballotlemoex 34484 satffunlem2lem2 35400 mapdunirnN 41651 mplmapghm 42551 evlsvvvallem2 42557 selvvvval 42580 evlsmhpvvval 42590 pwfi2en 43093 smfresal 46793 oddiadd 48166 2zrngadd 48235 2zrngmul 48243 |
| Copyright terms: Public domain | W3C validator |