![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 5333 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: rab2ex 5335 mapfien2 9406 cantnffval 9660 nqex 10920 gsumvalx 18601 psgnfval 19409 odval 19443 sylow1lem2 19508 sylow3lem6 19541 ablfaclem1 19996 psrass1lemOLD 21712 psrass1lem 21715 psrbas 21716 psrelbas 21717 psrmulfval 21723 psrmulcllem 21725 psrvscaval 21730 psr0cl 21732 psr0lid 21733 psrnegcl 21734 psrlinv 21735 psr1cl 21741 psrlidm 21742 psrdi 21745 psrdir 21746 psrass23l 21747 psrcom 21748 psrass23 21749 mvrval 21760 mplsubglem 21777 mpllsslem 21778 mplsubrglem 21782 mplvscaval 21794 mplmon 21809 mplmonmul 21810 mplcoe1 21811 ltbval 21817 mplmon2 21841 evlslem2 21861 evlslem3 21862 evlslem1 21864 rrxmet 25149 mdegldg 25808 lgamgulmlem5 26761 lgamgulmlem6 26762 lgamgulm2 26764 lgamcvglem 26768 upgrres1lem1 28821 frgrwopreg1 29826 dlwwlknondlwlknonen 29874 nsgmgc 32785 nsgqusf1o 32789 eulerpartlem1 33652 eulerpartlemt 33656 eulerpartgbij 33657 ballotlemoex 33770 satffunlem2lem2 34683 mapdunirnN 40824 mplmapghm 41430 evlsvvvallem2 41436 selvvvval 41459 evlsmhpvvval 41469 pwfi2en 42141 smfresal 45803 oddiadd 46851 2zrngadd 46924 2zrngmul 46932 |
Copyright terms: Public domain | W3C validator |