![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 5345 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 {crab 3432 Vcvv 3477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 df-pw 4606 |
This theorem is referenced by: rab2ex 5347 mapfien2 9446 cantnffval 9700 nqex 10960 gsumvalx 18701 psgnfval 19532 odval 19566 sylow1lem2 19631 sylow3lem6 19664 ablfaclem1 20119 psrass1lem 21969 psrbas 21970 psrelbas 21971 psrmulfval 21980 psrmulcllem 21982 psrvscaval 21987 psr0cl 21989 psr0lid 21990 psrnegcl 21991 psrlinv 21992 psr1cl 21998 psrlidm 21999 psrdi 22002 psrdir 22003 psrass23l 22004 psrcom 22005 psrass23 22006 mvrval 22019 mplsubglem 22036 mpllsslem 22037 mplsubrglem 22041 mplvscaval 22053 mplmon 22070 mplmonmul 22071 mplcoe1 22072 ltbval 22078 mplmon2 22102 evlslem2 22120 evlslem3 22121 evlslem1 22123 psdval 22180 rrxmet 25455 mdegldg 26119 lgamgulmlem5 27090 lgamgulmlem6 27091 lgamgulm2 27093 lgamcvglem 27097 upgrres1lem1 29340 frgrwopreg1 30346 dlwwlknondlwlknonen 30394 nsgmgc 33419 nsgqusf1o 33423 ssdifidl 33464 eulerpartlem1 34348 eulerpartlemt 34352 eulerpartgbij 34353 ballotlemoex 34466 satffunlem2lem2 35390 mapdunirnN 41632 mplmapghm 42542 evlsvvvallem2 42548 selvvvval 42571 evlsmhpvvval 42581 pwfi2en 43085 smfresal 46743 oddiadd 48017 2zrngadd 48086 2zrngmul 48094 |
Copyright terms: Public domain | W3C validator |