| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 5295 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: rab2ex 5297 mapfien2 9360 cantnffval 9616 nqex 10876 gsumvalx 18603 psgnfval 19430 odval 19464 sylow1lem2 19529 sylow3lem6 19562 ablfaclem1 20017 psrass1lem 21841 psrbas 21842 psrelbas 21843 psrmulfval 21852 psrmulcllem 21854 psrvscaval 21859 psr0cl 21861 psr0lid 21862 psrnegcl 21863 psrlinv 21864 psr1cl 21870 psrlidm 21871 psrdi 21874 psrdir 21875 psrass23l 21876 psrcom 21877 psrass23 21878 mvrval 21891 mplsubglem 21908 mpllsslem 21909 mplsubrglem 21913 mplvscaval 21925 mplmon 21942 mplmonmul 21943 mplcoe1 21944 ltbval 21950 mplmon2 21968 evlslem2 21986 evlslem3 21987 evlslem1 21989 psdval 22046 rrxmet 25308 mdegldg 25971 lgamgulmlem5 26943 lgamgulmlem6 26944 lgamgulm2 26946 lgamcvglem 26950 upgrres1lem1 29236 frgrwopreg1 30247 dlwwlknondlwlknonen 30295 nsgmgc 33383 nsgqusf1o 33387 ssdifidl 33428 eulerpartlem1 34358 eulerpartlemt 34362 eulerpartgbij 34363 ballotlemoex 34477 satffunlem2lem2 35393 mapdunirnN 41644 mplmapghm 42544 evlsvvvallem2 42550 selvvvval 42573 evlsmhpvvval 42583 pwfi2en 43086 smfresal 46786 oddiadd 48162 2zrngadd 48231 2zrngmul 48239 |
| Copyright terms: Public domain | W3C validator |