![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabex2 | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
rabex2.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rabex2 | ⊢ 𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
4 | 2, 3 | rabexd 5329 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 |
This theorem is referenced by: rab2ex 5331 mapfien2 9426 cantnffval 9680 nqex 10940 gsumvalx 18629 psgnfval 19448 odval 19482 sylow1lem2 19547 sylow3lem6 19580 ablfaclem1 20035 psrass1lemOLD 21867 psrass1lem 21870 psrbas 21871 psrelbas 21872 psrmulfval 21879 psrmulcllem 21881 psrvscaval 21886 psr0cl 21888 psr0lid 21889 psrnegcl 21890 psrlinv 21891 psr1cl 21897 psrlidm 21898 psrdi 21901 psrdir 21902 psrass23l 21903 psrcom 21904 psrass23 21905 mvrval 21917 mplsubglem 21934 mpllsslem 21935 mplsubrglem 21939 mplvscaval 21951 mplmon 21966 mplmonmul 21967 mplcoe1 21968 ltbval 21974 mplmon2 21998 evlslem2 22018 evlslem3 22019 evlslem1 22021 psdval 22076 rrxmet 25329 mdegldg 25995 lgamgulmlem5 26958 lgamgulmlem6 26959 lgamgulm2 26961 lgamcvglem 26965 upgrres1lem1 29115 frgrwopreg1 30121 dlwwlknondlwlknonen 30169 nsgmgc 33116 nsgqusf1o 33120 eulerpartlem1 33977 eulerpartlemt 33981 eulerpartgbij 33982 ballotlemoex 34095 satffunlem2lem2 35006 mapdunirnN 41112 mplmapghm 41761 evlsvvvallem2 41767 selvvvval 41790 evlsmhpvvval 41800 pwfi2en 42493 smfresal 46148 oddiadd 47208 2zrngadd 47277 2zrngmul 47285 |
Copyright terms: Public domain | W3C validator |