| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumbagdiag | Structured version Visualization version GIF version | ||
| Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15684 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| gsumbagdiag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| gsumbagdiag.s | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
| gsumbagdiag.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| gsumbagdiag.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumbagdiag.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumbagdiag.x | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsumbagdiag | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumbagdiag.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2731 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsumbagdiag.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumbagdiag.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} | |
| 5 | gsumbagdiag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 6 | gsumbagdiag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 7 | 6 | psrbaglefi 21863 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
| 9 | 4, 8 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
| 10 | ovex 7379 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 11 | 6, 10 | rab2ex 5278 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V |
| 12 | 11 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
| 13 | gsumbagdiag.x | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) | |
| 14 | xpfi 9204 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) | |
| 15 | 9, 9, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
| 16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) | |
| 17 | 6, 4, 5 | gsumbagdiaglem 21867 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) |
| 18 | 17 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑘 ∈ 𝑆) |
| 19 | brxp 5663 | . . . . 5 ⊢ (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆)) | |
| 20 | 16, 18, 19 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘) |
| 21 | 20 | pm2.24d 151 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘 → 𝑋 = (0g‘𝐺))) |
| 22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g‘𝐺)) |
| 23 | 6, 4, 5 | gsumbagdiaglem 21867 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) → (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
| 24 | 17, 23 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ↔ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)}))) |
| 25 | 1, 2, 3, 9, 12, 13, 15, 22, 9, 24 | gsumcom2 19887 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 class class class wbr 5089 × cxp 5612 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ∘f cof 7608 ∘r cofr 7609 ↑m cmap 8750 Fincfn 8869 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cntz 19229 df-cmn 19694 |
| This theorem is referenced by: psrass1lem 21869 |
| Copyright terms: Public domain | W3C validator |