Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiag Structured version   Visualization version   GIF version

Theorem gsumbagdiag 20148
 Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15124 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiag (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑥,𝑦   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiag
StepHypRef Expression
1 gsumbagdiag.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2819 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiag.g . 2 (𝜑𝐺 ∈ CMnd)
4 psrbagconf1o.1 . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
5 gsumbagdiag.i . . . 4 (𝜑𝐼𝑉)
6 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
7 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 20144 . . . 4 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
95, 6, 8syl2anc 586 . . 3 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
104, 9eqeltrid 2915 . 2 (𝜑𝑆 ∈ Fin)
11 ovex 7181 . . . 4 (ℕ0m 𝐼) ∈ V
127, 11rab2ex 5229 . . 3 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V
1312a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
14 gsumbagdiag.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
15 xpfi 8781 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
1610, 10, 15syl2anc 586 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
17 simprl 769 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
187, 4, 5, 6gsumbagdiaglem 20147 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)}))
1918simpld 497 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑘𝑆)
20 brxp 5594 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2117, 19, 20sylanbrc 585 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2221pm2.24d 154 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2322impr 457 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
247, 4, 5, 6gsumbagdiaglem 20147 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
2518, 24impbida 799 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})))
261, 2, 3, 10, 13, 14, 16, 23, 10, 25gsumcom2 19087 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108  {crab 3140  Vcvv 3493   class class class wbr 5057   × cxp 5546  ◡ccnv 5547   “ cima 5551  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150   ∘f cof 7399   ∘r cofr 7400   ↑m cmap 8398  Fincfn 8501   ≤ cle 10668   − cmin 10862  ℕcn 11630  ℕ0cn0 11889  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-cntz 18439  df-cmn 18900 This theorem is referenced by:  psrass1lem  20149
 Copyright terms: Public domain W3C validator