![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumbagdiag | Structured version Visualization version GIF version |
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15719 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.) |
Ref | Expression |
---|---|
gsumbagdiag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
gsumbagdiag.s | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
gsumbagdiag.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
gsumbagdiag.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumbagdiag.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumbagdiag.x | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumbagdiag | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumbagdiag.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2732 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumbagdiag.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumbagdiag.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} | |
5 | gsumbagdiag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
6 | gsumbagdiag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
7 | 6 | psrbaglefi 21476 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
9 | 4, 8 | eqeltrid 2837 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
10 | ovex 7438 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
11 | 6, 10 | rab2ex 5334 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
13 | gsumbagdiag.x | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) | |
14 | xpfi 9313 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) | |
15 | 9, 9, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
16 | simprl 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) | |
17 | 6, 4, 5 | gsumbagdiaglem 21485 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) |
18 | 17 | simpld 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑘 ∈ 𝑆) |
19 | brxp 5723 | . . . . 5 ⊢ (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆)) | |
20 | 16, 18, 19 | sylanbrc 583 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘) |
21 | 20 | pm2.24d 151 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘 → 𝑋 = (0g‘𝐺))) |
22 | 21 | impr 455 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g‘𝐺)) |
23 | 6, 4, 5 | gsumbagdiaglem 21485 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) → (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
24 | 17, 23 | impbida 799 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ↔ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)}))) |
25 | 1, 2, 3, 9, 12, 13, 15, 22, 9, 24 | gsumcom2 19837 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 class class class wbr 5147 × cxp 5673 ◡ccnv 5674 “ cima 5678 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 ∘f cof 7664 ∘r cofr 7665 ↑m cmap 8816 Fincfn 8935 ≤ cle 11245 − cmin 11440 ℕcn 12208 ℕ0cn0 12468 Basecbs 17140 0gc0g 17381 Σg cgsu 17382 CMndccmn 19642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-cntz 19175 df-cmn 19644 |
This theorem is referenced by: psrass1lem 21487 |
Copyright terms: Public domain | W3C validator |