MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiag Structured version   Visualization version   GIF version

Theorem gsumbagdiag 21868
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15684 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiag (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹   𝑥,𝐹   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋   𝑥,𝑋   𝑦,𝑋   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝑦,𝐼,𝑓   𝑆,𝑗,𝑘   𝜑,𝑗,𝑘   𝑓,𝑗,𝑘,𝑦   𝑥,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiag
StepHypRef Expression
1 gsumbagdiag.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2731 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiag.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumbagdiag.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
5 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
6 gsumbagdiag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76psrbaglefi 21863 . . . 4 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
85, 7syl 17 . . 3 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
94, 8eqeltrid 2835 . 2 (𝜑𝑆 ∈ Fin)
10 ovex 7379 . . . 4 (ℕ0m 𝐼) ∈ V
116, 10rab2ex 5278 . . 3 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V
1211a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
13 gsumbagdiag.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
14 xpfi 9204 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
159, 9, 14syl2anc 584 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
16 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
176, 4, 5gsumbagdiaglem 21867 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)}))
1817simpld 494 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑘𝑆)
19 brxp 5663 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2016, 18, 19sylanbrc 583 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2120pm2.24d 151 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2221impr 454 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
236, 4, 5gsumbagdiaglem 21867 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
2417, 23impbida 800 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})))
251, 2, 3, 9, 12, 13, 15, 22, 9, 24gsumcom2 19887 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089   × cxp 5612  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  r cofr 7609  m cmap 8750  Fincfn 8869  cle 11147  cmin 11344  cn 12125  0cn0 12381  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  CMndccmn 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-cntz 19229  df-cmn 19694
This theorem is referenced by:  psrass1lem  21869
  Copyright terms: Public domain W3C validator