![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumbagdiag | Structured version Visualization version GIF version |
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15741 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.) |
Ref | Expression |
---|---|
gsumbagdiag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
gsumbagdiag.s | ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
gsumbagdiag.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
gsumbagdiag.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumbagdiag.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumbagdiag.x | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsumbagdiag | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumbagdiag.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2727 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumbagdiag.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumbagdiag.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} | |
5 | gsumbagdiag.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
6 | gsumbagdiag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
7 | 6 | psrbaglefi 21845 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
9 | 4, 8 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) |
10 | ovex 7447 | . . . 4 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
11 | 6, 10 | rab2ex 5331 | . . 3 ⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
13 | gsumbagdiag.x | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) | |
14 | xpfi 9331 | . . 3 ⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) | |
15 | 9, 9, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) | |
17 | 6, 4, 5 | gsumbagdiaglem 21854 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) |
18 | 17 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑘 ∈ 𝑆) |
19 | brxp 5721 | . . . . 5 ⊢ (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆)) | |
20 | 16, 18, 19 | sylanbrc 582 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘) |
21 | 20 | pm2.24d 151 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘 → 𝑋 = (0g‘𝐺))) |
22 | 21 | impr 454 | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g‘𝐺)) |
23 | 6, 4, 5 | gsumbagdiaglem 21854 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)})) → (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
24 | 17, 23 | impbida 800 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ↔ (𝑘 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)}))) |
25 | 1, 2, 3, 9, 12, 13, 15, 22, 9, 24 | gsumcom2 19914 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑘)} ↦ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 class class class wbr 5142 × cxp 5670 ◡ccnv 5671 “ cima 5675 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ∘f cof 7675 ∘r cofr 7676 ↑m cmap 8834 Fincfn 8953 ≤ cle 11265 − cmin 11460 ℕcn 12228 ℕ0cn0 12488 Basecbs 17165 0gc0g 17406 Σg cgsu 17407 CMndccmn 19719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-ofr 7678 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-seq 13985 df-hash 14308 df-0g 17408 df-gsum 17409 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-cntz 19252 df-cmn 19721 |
This theorem is referenced by: psrass1lem 21856 |
Copyright terms: Public domain | W3C validator |