MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiag Structured version   Visualization version   GIF version

Theorem gsumbagdiag 21360
Description: Two-dimensional commutation of a group sum over a "triangular" region. fsum0diag 15667 analogue for finite bags. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
Assertion
Ref Expression
gsumbagdiag (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹   𝑥,𝐹   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋   𝑥,𝑋   𝑦,𝑋   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝑦,𝐼,𝑓   𝑆,𝑗,𝑘   𝜑,𝑗,𝑘   𝑓,𝑗,𝑘,𝑦   𝑥,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐵(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsumbagdiag
StepHypRef Expression
1 gsumbagdiag.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2733 . 2 (0g𝐺) = (0g𝐺)
3 gsumbagdiag.g . 2 (𝜑𝐺 ∈ CMnd)
4 gsumbagdiag.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
5 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
6 gsumbagdiag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
76psrbaglefi 21350 . . . 4 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
85, 7syl 17 . . 3 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
94, 8eqeltrid 2838 . 2 (𝜑𝑆 ∈ Fin)
10 ovex 7391 . . . 4 (ℕ0m 𝐼) ∈ V
116, 10rab2ex 5293 . . 3 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V
1211a1i 11 . 2 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
13 gsumbagdiag.x . 2 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
14 xpfi 9264 . . 3 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
159, 9, 14syl2anc 585 . 2 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
16 simprl 770 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
176, 4, 5gsumbagdiaglem 21359 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)}))
1817simpld 496 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑘𝑆)
19 brxp 5682 . . . . 5 (𝑗(𝑆 × 𝑆)𝑘 ↔ (𝑗𝑆𝑘𝑆))
2016, 18, 19sylanbrc 584 . . . 4 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑘)
2120pm2.24d 151 . . 3 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑘𝑋 = (0g𝐺)))
2221impr 456 . 2 ((𝜑 ∧ ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑘)) → 𝑋 = (0g𝐺))
236, 4, 5gsumbagdiaglem 21359 . . 3 ((𝜑 ∧ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})) → (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
2417, 23impbida 800 . 2 (𝜑 → ((𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ↔ (𝑘𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)})))
251, 2, 3, 9, 12, 13, 15, 22, 9, 24gsumcom2 19757 1 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑘𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑘)} ↦ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3406  Vcvv 3444   class class class wbr 5106   × cxp 5632  ccnv 5633  cima 5637  cfv 6497  (class class class)co 7358  cmpo 7360  f cof 7616  r cofr 7617  m cmap 8768  Fincfn 8886  cle 11195  cmin 11390  cn 12158  0cn0 12418  Basecbs 17088  0gc0g 17326   Σg cgsu 17327  CMndccmn 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-ofr 7619  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-seq 13913  df-hash 14237  df-0g 17328  df-gsum 17329  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-cntz 19102  df-cmn 19569
This theorem is referenced by:  psrass1lem  21361
  Copyright terms: Public domain W3C validator