Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabexf | Structured version Visualization version GIF version |
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rabexf.1 | ⊢ Ⅎ𝑥𝐴 |
rabexf.2 | ⊢ 𝐴 ∈ 𝑉 |
Ref | Expression |
---|---|
rabexf | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexf.2 | . 2 ⊢ 𝐴 ∈ 𝑉 | |
2 | rabexf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | rabexgf 42567 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Ⅎwnfc 2887 {crab 3068 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: limsupequzmpt2 43259 liminfequzmpt2 43332 |
Copyright terms: Public domain | W3C validator |