Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexf Structured version   Visualization version   GIF version

Theorem rabexf 45036
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rabexf.1 𝑥𝐴
rabexf.2 𝐴𝑉
Assertion
Ref Expression
rabexf {𝑥𝐴𝜑} ∈ V

Proof of Theorem rabexf
StepHypRef Expression
1 rabexf.2 . 2 𝐴𝑉
2 rabexf.1 . . 3 𝑥𝐴
32rabexgf 44924 . 2 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
41, 3ax-mp 5 1 {𝑥𝐴𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wnfc 2893  {crab 3443  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  limsupequzmpt2  45639  liminfequzmpt2  45712  fsupdm  46763  finfdm  46767
  Copyright terms: Public domain W3C validator