Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmpt2 Structured version   Visualization version   GIF version

Theorem limsupequzmpt2 45246
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmpt2.j 𝑗𝜑
limsupequzmpt2.o 𝑗𝐴
limsupequzmpt2.p 𝑗𝐵
limsupequzmpt2.a 𝐴 = (ℤ𝑀)
limsupequzmpt2.b 𝐵 = (ℤ𝑁)
limsupequzmpt2.k (𝜑𝐾𝐴)
limsupequzmpt2.e (𝜑𝐾𝐵)
limsupequzmpt2.c ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
Assertion
Ref Expression
limsupequzmpt2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem limsupequzmpt2
StepHypRef Expression
1 limsupequzmpt2.j . . . . . . . . 9 𝑗𝜑
2 limsupequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (ℤ𝑀)
3 limsupequzmpt2.k . . . . . . . . . . . . . . 15 (𝜑𝐾𝐴)
42, 3uzssd2 44939 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
54adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
6 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
75, 6sseldd 3977 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
8 limsupequzmpt2.c . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
98elexd 3483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶 ∈ V)
107, 9jca 510 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐴𝐶 ∈ V))
11 rabid 3439 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↔ (𝑗𝐴𝐶 ∈ V))
1210, 11sylibr 233 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1312ex 411 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V}))
141, 13ralrimi 3244 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
15 nfcv 2891 . . . . . . . . 9 𝑗(ℤ𝐾)
16 nfrab1 3438 . . . . . . . . 9 𝑗{𝑗𝐴𝐶 ∈ V}
1715, 16dfss3f 3968 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1814, 17sylibr 233 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V})
1916, 15resmptf 6044 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2120eqcomd 2731 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
2221fveq2d 6900 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
232, 3eluzelz2d 44935 . . . . 5 (𝜑𝐾 ∈ ℤ)
24 eqid 2725 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
25 limsupequzmpt2.o . . . . . . . 8 𝑗𝐴
262fvexi 6910 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 44642 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ∈ V
2816, 27mptexf 44752 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V
2928a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V)
30 eqid 2725 . . . . . . . 8 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
3116, 30dmmptssf 44746 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐴𝐶 ∈ V}
3225ssrab2f 44625 . . . . . . . 8 {𝑗𝐴𝐶 ∈ V} ⊆ 𝐴
33 uzssz 12881 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
342, 33eqsstri 4011 . . . . . . . 8 𝐴 ⊆ ℤ
3532, 34sstri 3986 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ⊆ ℤ
3631, 35sstri 3986 . . . . . 6 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
3736a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
3823, 24, 29, 37limsupresuz2 45237 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
3922, 38eqtr2d 2766 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
40 limsupequzmpt2.b . . . . . . . . . . . . . . 15 𝐵 = (ℤ𝑁)
41 limsupequzmpt2.e . . . . . . . . . . . . . . 15 (𝜑𝐾𝐵)
4240, 41uzssd2 44939 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
4342adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
4443, 6sseldd 3977 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
4544, 9jca 510 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐵𝐶 ∈ V))
46 rabid 3439 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↔ (𝑗𝐵𝐶 ∈ V))
4745, 46sylibr 233 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
4847ex 411 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V}))
491, 48ralrimi 3244 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
50 nfrab1 3438 . . . . . . . . 9 𝑗{𝑗𝐵𝐶 ∈ V}
5115, 50dfss3f 3968 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
5249, 51sylibr 233 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V})
5350, 15resmptf 6044 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5452, 53syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5554eqcomd 2731 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
5655fveq2d 6900 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
57 limsupequzmpt2.p . . . . . . . 8 𝑗𝐵
5840fvexi 6910 . . . . . . . 8 𝐵 ∈ V
5957, 58rabexf 44642 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ∈ V
6050, 59mptexf 44752 . . . . . 6 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V
6160a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V)
62 eqid 2725 . . . . . . . 8 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
6350, 62dmmptssf 44746 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐵𝐶 ∈ V}
6457ssrab2f 44625 . . . . . . . 8 {𝑗𝐵𝐶 ∈ V} ⊆ 𝐵
65 uzssz 12881 . . . . . . . . 9 (ℤ𝑁) ⊆ ℤ
6640, 65eqsstri 4011 . . . . . . . 8 𝐵 ⊆ ℤ
6764, 66sstri 3986 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ⊆ ℤ
6863, 67sstri 3986 . . . . . 6 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
6968a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
7023, 24, 61, 69limsupresuz2 45237 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
7156, 70eqtr2d 2766 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
7239, 71eqtr4d 2768 . 2 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
73 eqid 2725 . . . . 5 {𝑗𝐴𝐶 ∈ V} = {𝑗𝐴𝐶 ∈ V}
7425, 73mptssid 44756 . . . 4 (𝑗𝐴𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
7574fveq2i 6899 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶))
7675a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
77 eqid 2725 . . . . 5 {𝑗𝐵𝐶 ∈ V} = {𝑗𝐵𝐶 ∈ V}
7857, 77mptssid 44756 . . . 4 (𝑗𝐵𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
7978fveq2i 6899 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶))
8079a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
8172, 76, 803eqtr4d 2775 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wral 3050  {crab 3418  Vcvv 3461  wss 3944  cmpt 5232  dom cdm 5678  cres 5680  cfv 6549  cz 12596  cuz 12860  lim supclsp 15455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-ico 13370  df-limsup 15456
This theorem is referenced by:  smflimsupmpt  46357
  Copyright terms: Public domain W3C validator