Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmpt2 Structured version   Visualization version   GIF version

Theorem limsupequzmpt2 45733
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmpt2.j 𝑗𝜑
limsupequzmpt2.o 𝑗𝐴
limsupequzmpt2.p 𝑗𝐵
limsupequzmpt2.a 𝐴 = (ℤ𝑀)
limsupequzmpt2.b 𝐵 = (ℤ𝑁)
limsupequzmpt2.k (𝜑𝐾𝐴)
limsupequzmpt2.e (𝜑𝐾𝐵)
limsupequzmpt2.c ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
Assertion
Ref Expression
limsupequzmpt2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem limsupequzmpt2
StepHypRef Expression
1 limsupequzmpt2.j . . . . . . . . 9 𝑗𝜑
2 limsupequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (ℤ𝑀)
3 limsupequzmpt2.k . . . . . . . . . . . . . . 15 (𝜑𝐾𝐴)
42, 3uzssd2 45428 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
54adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
6 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
75, 6sseldd 3984 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
8 limsupequzmpt2.c . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
98elexd 3504 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶 ∈ V)
107, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐴𝐶 ∈ V))
11 rabid 3458 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↔ (𝑗𝐴𝐶 ∈ V))
1210, 11sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1312ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V}))
141, 13ralrimi 3257 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
15 nfcv 2905 . . . . . . . . 9 𝑗(ℤ𝐾)
16 nfrab1 3457 . . . . . . . . 9 𝑗{𝑗𝐴𝐶 ∈ V}
1715, 16dfss3f 3975 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1814, 17sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V})
1916, 15resmptf 6057 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2120eqcomd 2743 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
2221fveq2d 6910 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
232, 3eluzelz2d 45424 . . . . 5 (𝜑𝐾 ∈ ℤ)
24 eqid 2737 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
25 limsupequzmpt2.o . . . . . . . 8 𝑗𝐴
262fvexi 6920 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 45139 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ∈ V
2816, 27mptexf 45243 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V
2928a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V)
30 eqid 2737 . . . . . . . 8 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
3116, 30dmmptssf 45237 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐴𝐶 ∈ V}
3225ssrab2f 45122 . . . . . . . 8 {𝑗𝐴𝐶 ∈ V} ⊆ 𝐴
33 uzssz 12899 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
342, 33eqsstri 4030 . . . . . . . 8 𝐴 ⊆ ℤ
3532, 34sstri 3993 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ⊆ ℤ
3631, 35sstri 3993 . . . . . 6 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
3736a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
3823, 24, 29, 37limsupresuz2 45724 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
3922, 38eqtr2d 2778 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
40 limsupequzmpt2.b . . . . . . . . . . . . . . 15 𝐵 = (ℤ𝑁)
41 limsupequzmpt2.e . . . . . . . . . . . . . . 15 (𝜑𝐾𝐵)
4240, 41uzssd2 45428 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
4443, 6sseldd 3984 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
4544, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐵𝐶 ∈ V))
46 rabid 3458 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↔ (𝑗𝐵𝐶 ∈ V))
4745, 46sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
4847ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V}))
491, 48ralrimi 3257 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
50 nfrab1 3457 . . . . . . . . 9 𝑗{𝑗𝐵𝐶 ∈ V}
5115, 50dfss3f 3975 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
5249, 51sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V})
5350, 15resmptf 6057 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5452, 53syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5554eqcomd 2743 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
5655fveq2d 6910 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
57 limsupequzmpt2.p . . . . . . . 8 𝑗𝐵
5840fvexi 6920 . . . . . . . 8 𝐵 ∈ V
5957, 58rabexf 45139 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ∈ V
6050, 59mptexf 45243 . . . . . 6 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V
6160a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V)
62 eqid 2737 . . . . . . . 8 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
6350, 62dmmptssf 45237 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐵𝐶 ∈ V}
6457ssrab2f 45122 . . . . . . . 8 {𝑗𝐵𝐶 ∈ V} ⊆ 𝐵
65 uzssz 12899 . . . . . . . . 9 (ℤ𝑁) ⊆ ℤ
6640, 65eqsstri 4030 . . . . . . . 8 𝐵 ⊆ ℤ
6764, 66sstri 3993 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ⊆ ℤ
6863, 67sstri 3993 . . . . . 6 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
6968a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
7023, 24, 61, 69limsupresuz2 45724 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
7156, 70eqtr2d 2778 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
7239, 71eqtr4d 2780 . 2 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
73 eqid 2737 . . . . 5 {𝑗𝐴𝐶 ∈ V} = {𝑗𝐴𝐶 ∈ V}
7425, 73mptssid 45247 . . . 4 (𝑗𝐴𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
7574fveq2i 6909 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶))
7675a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
77 eqid 2737 . . . . 5 {𝑗𝐵𝐶 ∈ V} = {𝑗𝐵𝐶 ∈ V}
7857, 77mptssid 45247 . . . 4 (𝑗𝐵𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
7978fveq2i 6909 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶))
8079a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
8172, 76, 803eqtr4d 2787 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  wral 3061  {crab 3436  Vcvv 3480  wss 3951  cmpt 5225  dom cdm 5685  cres 5687  cfv 6561  cz 12613  cuz 12878  lim supclsp 15506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-ico 13393  df-limsup 15507
This theorem is referenced by:  smflimsupmpt  46844
  Copyright terms: Public domain W3C validator