Proof of Theorem limsupequzmpt2
Step | Hyp | Ref
| Expression |
1 | | limsupequzmpt2.j |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
2 | | limsupequzmpt2.a |
. . . . . . . . . . . . . . 15
⊢ 𝐴 =
(ℤ≥‘𝑀) |
3 | | limsupequzmpt2.k |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ 𝐴) |
4 | 2, 3 | uzssd2 42957 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ 𝐴) |
5 | 4 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘𝐾) ⊆ 𝐴) |
6 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ (ℤ≥‘𝐾)) |
7 | 5, 6 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ 𝐴) |
8 | | limsupequzmpt2.c |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ 𝑉) |
9 | 8 | elexd 3452 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ V) |
10 | 7, 9 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 ∈ 𝐴 ∧ 𝐶 ∈ V)) |
11 | | rabid 3310 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↔ (𝑗 ∈ 𝐴 ∧ 𝐶 ∈ V)) |
12 | 10, 11 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V}) |
13 | 12 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝐾) → 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V})) |
14 | 1, 13 | ralrimi 3141 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝐾)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V}) |
15 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑗(ℤ≥‘𝐾) |
16 | | nfrab1 3317 |
. . . . . . . . 9
⊢
Ⅎ𝑗{𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} |
17 | 15, 16 | dfss3f 3912 |
. . . . . . . 8
⊢
((ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ≥‘𝐾)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V}) |
18 | 14, 17 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V}) |
19 | 16, 15 | resmptf 5947 |
. . . . . . 7
⊢
((ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} → ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)) = (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶)) |
20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)) = (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶)) |
21 | 20 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾))) |
22 | 21 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑗 ∈
(ℤ≥‘𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)))) |
23 | 2, 3 | eluzelz2d 42953 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ℤ) |
24 | | eqid 2738 |
. . . . 5
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
25 | | limsupequzmpt2.o |
. . . . . . . 8
⊢
Ⅎ𝑗𝐴 |
26 | 2 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
27 | 25, 26 | rabexf 42683 |
. . . . . . 7
⊢ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ∈ V |
28 | 16, 27 | mptexf 42781 |
. . . . . 6
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ∈ V |
29 | 28 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ∈ V) |
30 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) |
31 | 16, 30 | dmmptssf 42775 |
. . . . . . 7
⊢ dom
(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} |
32 | 25 | ssrab2f 42666 |
. . . . . . . 8
⊢ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ⊆ 𝐴 |
33 | | uzssz 12603 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
34 | 2, 33 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝐴 ⊆
ℤ |
35 | 32, 34 | sstri 3930 |
. . . . . . 7
⊢ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ⊆ ℤ |
36 | 31, 35 | sstri 3930 |
. . . . . 6
⊢ dom
(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ |
37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ) |
38 | 23, 24, 29, 37 | limsupresuz2 43250 |
. . . 4
⊢ (𝜑 → (lim sup‘((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾))) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶))) |
39 | 22, 38 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶))) |
40 | | limsupequzmpt2.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 =
(ℤ≥‘𝑁) |
41 | | limsupequzmpt2.e |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ 𝐵) |
42 | 40, 41 | uzssd2 42957 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ 𝐵) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) →
(ℤ≥‘𝐾) ⊆ 𝐵) |
44 | 43, 6 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ 𝐵) |
45 | 44, 9 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → (𝑗 ∈ 𝐵 ∧ 𝐶 ∈ V)) |
46 | | rabid 3310 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ (𝑗 ∈ 𝐵 ∧ 𝐶 ∈ V)) |
47 | 45, 46 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
48 | 47 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝐾) → 𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V})) |
49 | 1, 48 | ralrimi 3141 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝐾)𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
50 | | nfrab1 3317 |
. . . . . . . . 9
⊢
Ⅎ𝑗{𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} |
51 | 15, 50 | dfss3f 3912 |
. . . . . . . 8
⊢
((ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ≥‘𝐾)𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
52 | 49, 51 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
53 | 50, 15 | resmptf 5947 |
. . . . . . 7
⊢
((ℤ≥‘𝐾) ⊆ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} → ((𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)) = (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶)) |
54 | 52, 53 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)) = (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶)) |
55 | 54 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾))) |
56 | 55 | fveq2d 6778 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑗 ∈
(ℤ≥‘𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾)))) |
57 | | limsupequzmpt2.p |
. . . . . . . 8
⊢
Ⅎ𝑗𝐵 |
58 | 40 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
59 | 57, 58 | rabexf 42683 |
. . . . . . 7
⊢ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ∈ V |
60 | 50, 59 | mptexf 42781 |
. . . . . 6
⊢ (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ∈ V |
61 | 60 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ∈ V) |
62 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) |
63 | 50, 62 | dmmptssf 42775 |
. . . . . . 7
⊢ dom
(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} |
64 | 57 | ssrab2f 42666 |
. . . . . . . 8
⊢ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ⊆ 𝐵 |
65 | | uzssz 12603 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑁) ⊆ ℤ |
66 | 40, 65 | eqsstri 3955 |
. . . . . . . 8
⊢ 𝐵 ⊆
ℤ |
67 | 64, 66 | sstri 3930 |
. . . . . . 7
⊢ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ⊆ ℤ |
68 | 63, 67 | sstri 3930 |
. . . . . 6
⊢ dom
(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ |
69 | 68 | a1i 11 |
. . . . 5
⊢ (𝜑 → dom (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ) |
70 | 23, 24, 61, 69 | limsupresuz2 43250 |
. . . 4
⊢ (𝜑 → (lim sup‘((𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) ↾
(ℤ≥‘𝐾))) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶))) |
71 | 56, 70 | eqtr2d 2779 |
. . 3
⊢ (𝜑 → (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ≥‘𝐾) ↦ 𝐶))) |
72 | 39, 71 | eqtr4d 2781 |
. 2
⊢ (𝜑 → (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶))) |
73 | | eqid 2738 |
. . . . 5
⊢ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} = {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} |
74 | 25, 73 | mptssid 42785 |
. . . 4
⊢ (𝑗 ∈ 𝐴 ↦ 𝐶) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶) |
75 | 74 | fveq2i 6777 |
. . 3
⊢ (lim
sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶)) |
76 | 75 | a1i 11 |
. 2
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V} ↦ 𝐶))) |
77 | | eqid 2738 |
. . . . 5
⊢ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} = {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} |
78 | 57, 77 | mptssid 42785 |
. . . 4
⊢ (𝑗 ∈ 𝐵 ↦ 𝐶) = (𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶) |
79 | 78 | fveq2i 6777 |
. . 3
⊢ (lim
sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶)) |
80 | 79 | a1i 11 |
. 2
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V} ↦ 𝐶))) |
81 | 72, 76, 80 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) |