Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzmpt2 Structured version   Visualization version   GIF version

Theorem limsupequzmpt2 42286
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzmpt2.j 𝑗𝜑
limsupequzmpt2.o 𝑗𝐴
limsupequzmpt2.p 𝑗𝐵
limsupequzmpt2.a 𝐴 = (ℤ𝑀)
limsupequzmpt2.b 𝐵 = (ℤ𝑁)
limsupequzmpt2.k (𝜑𝐾𝐴)
limsupequzmpt2.e (𝜑𝐾𝐵)
limsupequzmpt2.c ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
Assertion
Ref Expression
limsupequzmpt2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem limsupequzmpt2
StepHypRef Expression
1 limsupequzmpt2.j . . . . . . . . 9 𝑗𝜑
2 limsupequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (ℤ𝑀)
3 limsupequzmpt2.k . . . . . . . . . . . . . . 15 (𝜑𝐾𝐴)
42, 3uzssd2 41980 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
54adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
6 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
75, 6sseldd 3954 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
8 limsupequzmpt2.c . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
98elexd 3500 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶 ∈ V)
107, 9jca 515 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐴𝐶 ∈ V))
11 rabid 3369 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↔ (𝑗𝐴𝐶 ∈ V))
1210, 11sylibr 237 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1312ex 416 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V}))
141, 13ralrimi 3210 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
15 nfcv 2982 . . . . . . . . 9 𝑗(ℤ𝐾)
16 nfrab1 3375 . . . . . . . . 9 𝑗{𝑗𝐴𝐶 ∈ V}
1715, 16dfss3f 3944 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1814, 17sylibr 237 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V})
1916, 15resmptf 5894 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2120eqcomd 2830 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
2221fveq2d 6665 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
232, 3eluzelz2d 41976 . . . . 5 (𝜑𝐾 ∈ ℤ)
24 eqid 2824 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
25 limsupequzmpt2.o . . . . . . . 8 𝑗𝐴
262fvexi 6675 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 41692 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ∈ V
2816, 27mptexf 41798 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V
2928a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V)
30 eqid 2824 . . . . . . . 8 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
3116, 30dmmptssf 41793 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐴𝐶 ∈ V}
3225ssrab2f 41674 . . . . . . . 8 {𝑗𝐴𝐶 ∈ V} ⊆ 𝐴
33 uzssz 12261 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
342, 33eqsstri 3987 . . . . . . . 8 𝐴 ⊆ ℤ
3532, 34sstri 3962 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ⊆ ℤ
3631, 35sstri 3962 . . . . . 6 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
3736a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
3823, 24, 29, 37limsupresuz2 42277 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
3922, 38eqtr2d 2860 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
40 limsupequzmpt2.b . . . . . . . . . . . . . . 15 𝐵 = (ℤ𝑁)
41 limsupequzmpt2.e . . . . . . . . . . . . . . 15 (𝜑𝐾𝐵)
4240, 41uzssd2 41980 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
4342adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
4443, 6sseldd 3954 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
4544, 9jca 515 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐵𝐶 ∈ V))
46 rabid 3369 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↔ (𝑗𝐵𝐶 ∈ V))
4745, 46sylibr 237 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
4847ex 416 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V}))
491, 48ralrimi 3210 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
50 nfrab1 3375 . . . . . . . . 9 𝑗{𝑗𝐵𝐶 ∈ V}
5115, 50dfss3f 3944 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
5249, 51sylibr 237 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V})
5350, 15resmptf 5894 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5452, 53syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5554eqcomd 2830 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
5655fveq2d 6665 . . . 4 (𝜑 → (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
57 limsupequzmpt2.p . . . . . . . 8 𝑗𝐵
5840fvexi 6675 . . . . . . . 8 𝐵 ∈ V
5957, 58rabexf 41692 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ∈ V
6050, 59mptexf 41798 . . . . . 6 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V
6160a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V)
62 eqid 2824 . . . . . . . 8 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
6350, 62dmmptssf 41793 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐵𝐶 ∈ V}
6457ssrab2f 41674 . . . . . . . 8 {𝑗𝐵𝐶 ∈ V} ⊆ 𝐵
65 uzssz 12261 . . . . . . . . 9 (ℤ𝑁) ⊆ ℤ
6640, 65eqsstri 3987 . . . . . . . 8 𝐵 ⊆ ℤ
6764, 66sstri 3962 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ⊆ ℤ
6863, 67sstri 3962 . . . . . 6 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
6968a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
7023, 24, 61, 69limsupresuz2 42277 . . . 4 (𝜑 → (lim sup‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
7156, 70eqtr2d 2860 . . 3 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
7239, 71eqtr4d 2862 . 2 (𝜑 → (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
73 eqid 2824 . . . . 5 {𝑗𝐴𝐶 ∈ V} = {𝑗𝐴𝐶 ∈ V}
7425, 73mptssid 41802 . . . 4 (𝑗𝐴𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
7574fveq2i 6664 . . 3 (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶))
7675a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
77 eqid 2824 . . . . 5 {𝑗𝐵𝐶 ∈ V} = {𝑗𝐵𝐶 ∈ V}
7857, 77mptssid 41802 . . . 4 (𝑗𝐵𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
7978fveq2i 6664 . . 3 (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶))
8079a1i 11 . 2 (𝜑 → (lim sup‘(𝑗𝐵𝐶)) = (lim sup‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
8172, 76, 803eqtr4d 2869 1 (𝜑 → (lim sup‘(𝑗𝐴𝐶)) = (lim sup‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2115  wnfc 2962  wral 3133  {crab 3137  Vcvv 3480  wss 3919  cmpt 5132  dom cdm 5542  cres 5544  cfv 6343  cz 11978  cuz 12240  lim supclsp 14827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-q 12346  df-ico 12741  df-limsup 14828
This theorem is referenced by:  smflimsupmpt  43386
  Copyright terms: Public domain W3C validator