Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfequzmpt2 Structured version   Visualization version   GIF version

Theorem liminfequzmpt2 45796
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfequzmpt2.j 𝑗𝜑
liminfequzmpt2.o 𝑗𝐴
liminfequzmpt2.p 𝑗𝐵
liminfequzmpt2.a 𝐴 = (ℤ𝑀)
liminfequzmpt2.b 𝐵 = (ℤ𝑁)
liminfequzmpt2.k (𝜑𝐾𝐴)
liminfequzmpt2.e (𝜑𝐾𝐵)
liminfequzmpt2.c ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
Assertion
Ref Expression
liminfequzmpt2 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗𝐵𝐶)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem liminfequzmpt2
StepHypRef Expression
1 liminfequzmpt2.j . . . . . . . . 9 𝑗𝜑
2 liminfequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (ℤ𝑀)
3 liminfequzmpt2.k . . . . . . . . . . . . . . 15 (𝜑𝐾𝐴)
42, 3uzssd2 45420 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
54adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
6 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
75, 6sseldd 3950 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
8 liminfequzmpt2.c . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
98elexd 3474 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶 ∈ V)
107, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐴𝐶 ∈ V))
11 rabid 3430 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↔ (𝑗𝐴𝐶 ∈ V))
1210, 11sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1312ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V}))
141, 13ralrimi 3236 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
15 nfcv 2892 . . . . . . . . 9 𝑗(ℤ𝐾)
16 nfrab1 3429 . . . . . . . . 9 𝑗{𝑗𝐴𝐶 ∈ V}
1715, 16dfss3f 3941 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1814, 17sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V})
1916, 15resmptf 6013 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2120eqcomd 2736 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
2221fveq2d 6865 . . . 4 (𝜑 → (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim inf‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
232, 3eluzelz2d 45416 . . . . 5 (𝜑𝐾 ∈ ℤ)
24 eqid 2730 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
25 liminfequzmpt2.o . . . . . . . 8 𝑗𝐴
262fvexi 6875 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 45135 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ∈ V
2816, 27mptexf 45238 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V
2928a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V)
30 eqid 2730 . . . . . . . 8 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
3116, 30dmmptssf 45233 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐴𝐶 ∈ V}
3225ssrab2f 45118 . . . . . . . 8 {𝑗𝐴𝐶 ∈ V} ⊆ 𝐴
33 uzssz 12821 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
342, 33eqsstri 3996 . . . . . . . 8 𝐴 ⊆ ℤ
3532, 34sstri 3959 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ⊆ ℤ
3631, 35sstri 3959 . . . . . 6 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
3736a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
3823, 24, 29, 37liminfresuz2 45792 . . . 4 (𝜑 → (lim inf‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
3922, 38eqtr2d 2766 . . 3 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
40 liminfequzmpt2.b . . . . . . . . . . . . . . 15 𝐵 = (ℤ𝑁)
41 liminfequzmpt2.e . . . . . . . . . . . . . . 15 (𝜑𝐾𝐵)
4240, 41uzssd2 45420 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
4443, 6sseldd 3950 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
4544, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐵𝐶 ∈ V))
46 rabid 3430 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↔ (𝑗𝐵𝐶 ∈ V))
4745, 46sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
4847ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V}))
491, 48ralrimi 3236 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
50 nfrab1 3429 . . . . . . . . 9 𝑗{𝑗𝐵𝐶 ∈ V}
5115, 50dfss3f 3941 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
5249, 51sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V})
5350, 15resmptf 6013 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5452, 53syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5554eqcomd 2736 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
5655fveq2d 6865 . . . 4 (𝜑 → (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim inf‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
57 liminfequzmpt2.p . . . . . . . 8 𝑗𝐵
5840fvexi 6875 . . . . . . . 8 𝐵 ∈ V
5957, 58rabexf 45135 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ∈ V
6050, 59mptexf 45238 . . . . . 6 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V
6160a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V)
62 eqid 2730 . . . . . . . 8 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
6350, 62dmmptssf 45233 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐵𝐶 ∈ V}
6457ssrab2f 45118 . . . . . . . 8 {𝑗𝐵𝐶 ∈ V} ⊆ 𝐵
65 uzssz 12821 . . . . . . . . 9 (ℤ𝑁) ⊆ ℤ
6640, 65eqsstri 3996 . . . . . . . 8 𝐵 ⊆ ℤ
6764, 66sstri 3959 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ⊆ ℤ
6863, 67sstri 3959 . . . . . 6 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
6968a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
7023, 24, 61, 69liminfresuz2 45792 . . . 4 (𝜑 → (lim inf‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
7156, 70eqtr2d 2766 . . 3 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
7239, 71eqtr4d 2768 . 2 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
73 eqid 2730 . . . . 5 {𝑗𝐴𝐶 ∈ V} = {𝑗𝐴𝐶 ∈ V}
7425, 73mptssid 45242 . . . 4 (𝑗𝐴𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
7574fveq2i 6864 . . 3 (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶))
7675a1i 11 . 2 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
77 eqid 2730 . . . . 5 {𝑗𝐵𝐶 ∈ V} = {𝑗𝐵𝐶 ∈ V}
7857, 77mptssid 45242 . . . 4 (𝑗𝐵𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
7978fveq2i 6864 . . 3 (lim inf‘(𝑗𝐵𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶))
8079a1i 11 . 2 (𝜑 → (lim inf‘(𝑗𝐵𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
8172, 76, 803eqtr4d 2775 1 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  dom cdm 5641  cres 5643  cfv 6514  cz 12536  cuz 12800  lim infclsi 45756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-ico 13319  df-liminf 45757
This theorem is referenced by:  smfliminfmpt  46837
  Copyright terms: Public domain W3C validator