Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfequzmpt2 Structured version   Visualization version   GIF version

Theorem liminfequzmpt2 45746
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfequzmpt2.j 𝑗𝜑
liminfequzmpt2.o 𝑗𝐴
liminfequzmpt2.p 𝑗𝐵
liminfequzmpt2.a 𝐴 = (ℤ𝑀)
liminfequzmpt2.b 𝐵 = (ℤ𝑁)
liminfequzmpt2.k (𝜑𝐾𝐴)
liminfequzmpt2.e (𝜑𝐾𝐵)
liminfequzmpt2.c ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
Assertion
Ref Expression
liminfequzmpt2 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗𝐵𝐶)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)   𝐵(𝑗)   𝐶(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem liminfequzmpt2
StepHypRef Expression
1 liminfequzmpt2.j . . . . . . . . 9 𝑗𝜑
2 liminfequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (ℤ𝑀)
3 liminfequzmpt2.k . . . . . . . . . . . . . . 15 (𝜑𝐾𝐴)
42, 3uzssd2 45366 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐴)
54adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐴)
6 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ (ℤ𝐾))
75, 6sseldd 3995 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐴)
8 liminfequzmpt2.c . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶𝑉)
98elexd 3501 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝐶 ∈ V)
107, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐴𝐶 ∈ V))
11 rabid 3454 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↔ (𝑗𝐴𝐶 ∈ V))
1210, 11sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1312ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐴𝐶 ∈ V}))
141, 13ralrimi 3254 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
15 nfcv 2902 . . . . . . . . 9 𝑗(ℤ𝐾)
16 nfrab1 3453 . . . . . . . . 9 𝑗{𝑗𝐴𝐶 ∈ V}
1715, 16dfss3f 3986 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐴𝐶 ∈ V})
1814, 17sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V})
1916, 15resmptf 6058 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐴𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2018, 19syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
2120eqcomd 2740 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
2221fveq2d 6910 . . . 4 (𝜑 → (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim inf‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
232, 3eluzelz2d 45362 . . . . 5 (𝜑𝐾 ∈ ℤ)
24 eqid 2734 . . . . 5 (ℤ𝐾) = (ℤ𝐾)
25 liminfequzmpt2.o . . . . . . . 8 𝑗𝐴
262fvexi 6920 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 45073 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ∈ V
2816, 27mptexf 45180 . . . . . 6 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V
2928a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ∈ V)
30 eqid 2734 . . . . . . . 8 (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
3116, 30dmmptssf 45174 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐴𝐶 ∈ V}
3225ssrab2f 45056 . . . . . . . 8 {𝑗𝐴𝐶 ∈ V} ⊆ 𝐴
33 uzssz 12896 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
342, 33eqsstri 4029 . . . . . . . 8 𝐴 ⊆ ℤ
3532, 34sstri 4004 . . . . . . 7 {𝑗𝐴𝐶 ∈ V} ⊆ ℤ
3631, 35sstri 4004 . . . . . 6 dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
3736a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
3823, 24, 29, 37liminfresuz2 45742 . . . 4 (𝜑 → (lim inf‘((𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
3922, 38eqtr2d 2775 . . 3 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
40 liminfequzmpt2.b . . . . . . . . . . . . . . 15 𝐵 = (ℤ𝑁)
41 liminfequzmpt2.e . . . . . . . . . . . . . . 15 (𝜑𝐾𝐵)
4240, 41uzssd2 45366 . . . . . . . . . . . . . 14 (𝜑 → (ℤ𝐾) ⊆ 𝐵)
4342adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (ℤ𝐾)) → (ℤ𝐾) ⊆ 𝐵)
4443, 6sseldd 3995 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗𝐵)
4544, 9jca 511 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (ℤ𝐾)) → (𝑗𝐵𝐶 ∈ V))
46 rabid 3454 . . . . . . . . . . 11 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↔ (𝑗𝐵𝐶 ∈ V))
4745, 46sylibr 234 . . . . . . . . . 10 ((𝜑𝑗 ∈ (ℤ𝐾)) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
4847ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (ℤ𝐾) → 𝑗 ∈ {𝑗𝐵𝐶 ∈ V}))
491, 48ralrimi 3254 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
50 nfrab1 3453 . . . . . . . . 9 𝑗{𝑗𝐵𝐶 ∈ V}
5115, 50dfss3f 3986 . . . . . . . 8 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} ↔ ∀𝑗 ∈ (ℤ𝐾)𝑗 ∈ {𝑗𝐵𝐶 ∈ V})
5249, 51sylibr 234 . . . . . . 7 (𝜑 → (ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V})
5350, 15resmptf 6058 . . . . . . 7 ((ℤ𝐾) ⊆ {𝑗𝐵𝐶 ∈ V} → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5452, 53syl 17 . . . . . 6 (𝜑 → ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)) = (𝑗 ∈ (ℤ𝐾) ↦ 𝐶))
5554eqcomd 2740 . . . . 5 (𝜑 → (𝑗 ∈ (ℤ𝐾) ↦ 𝐶) = ((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾)))
5655fveq2d 6910 . . . 4 (𝜑 → (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)) = (lim inf‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))))
57 liminfequzmpt2.p . . . . . . . 8 𝑗𝐵
5840fvexi 6920 . . . . . . . 8 𝐵 ∈ V
5957, 58rabexf 45073 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ∈ V
6050, 59mptexf 45180 . . . . . 6 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V
6160a1i 11 . . . . 5 (𝜑 → (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ∈ V)
62 eqid 2734 . . . . . . . 8 (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
6350, 62dmmptssf 45174 . . . . . . 7 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ {𝑗𝐵𝐶 ∈ V}
6457ssrab2f 45056 . . . . . . . 8 {𝑗𝐵𝐶 ∈ V} ⊆ 𝐵
65 uzssz 12896 . . . . . . . . 9 (ℤ𝑁) ⊆ ℤ
6640, 65eqsstri 4029 . . . . . . . 8 𝐵 ⊆ ℤ
6764, 66sstri 4004 . . . . . . 7 {𝑗𝐵𝐶 ∈ V} ⊆ ℤ
6863, 67sstri 4004 . . . . . 6 dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ
6968a1i 11 . . . . 5 (𝜑 → dom (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ⊆ ℤ)
7023, 24, 61, 69liminfresuz2 45742 . . . 4 (𝜑 → (lim inf‘((𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶) ↾ (ℤ𝐾))) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
7156, 70eqtr2d 2775 . . 3 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ (ℤ𝐾) ↦ 𝐶)))
7239, 71eqtr4d 2777 . 2 (𝜑 → (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
73 eqid 2734 . . . . 5 {𝑗𝐴𝐶 ∈ V} = {𝑗𝐴𝐶 ∈ V}
7425, 73mptssid 45184 . . . 4 (𝑗𝐴𝐶) = (𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)
7574fveq2i 6909 . . 3 (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶))
7675a1i 11 . 2 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐴𝐶 ∈ V} ↦ 𝐶)))
77 eqid 2734 . . . . 5 {𝑗𝐵𝐶 ∈ V} = {𝑗𝐵𝐶 ∈ V}
7857, 77mptssid 45184 . . . 4 (𝑗𝐵𝐶) = (𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)
7978fveq2i 6909 . . 3 (lim inf‘(𝑗𝐵𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶))
8079a1i 11 . 2 (𝜑 → (lim inf‘(𝑗𝐵𝐶)) = (lim inf‘(𝑗 ∈ {𝑗𝐵𝐶 ∈ V} ↦ 𝐶)))
8172, 76, 803eqtr4d 2784 1 (𝜑 → (lim inf‘(𝑗𝐴𝐶)) = (lim inf‘(𝑗𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wnf 1779  wcel 2105  wnfc 2887  wral 3058  {crab 3432  Vcvv 3477  wss 3962  cmpt 5230  dom cdm 5688  cres 5690  cfv 6562  cz 12610  cuz 12875  lim infclsi 45706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-ico 13389  df-liminf 45707
This theorem is referenced by:  smfliminfmpt  46787
  Copyright terms: Public domain W3C validator