Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfequzmpt2 Structured version   Visualization version   GIF version

Theorem liminfequzmpt2 44507
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfequzmpt2.j β„²π‘—πœ‘
liminfequzmpt2.o Ⅎ𝑗𝐴
liminfequzmpt2.p Ⅎ𝑗𝐡
liminfequzmpt2.a 𝐴 = (β„€β‰₯β€˜π‘€)
liminfequzmpt2.b 𝐡 = (β„€β‰₯β€˜π‘)
liminfequzmpt2.k (πœ‘ β†’ 𝐾 ∈ 𝐴)
liminfequzmpt2.e (πœ‘ β†’ 𝐾 ∈ 𝐡)
liminfequzmpt2.c ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ 𝑉)
Assertion
Ref Expression
liminfequzmpt2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   πœ‘(𝑗)   𝐴(𝑗)   𝐡(𝑗)   𝐢(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem liminfequzmpt2
StepHypRef Expression
1 liminfequzmpt2.j . . . . . . . . 9 β„²π‘—πœ‘
2 liminfequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (β„€β‰₯β€˜π‘€)
3 liminfequzmpt2.k . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐾 ∈ 𝐴)
42, 3uzssd2 44127 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐴)
54adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐴)
6 simpr 486 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ (β„€β‰₯β€˜πΎ))
75, 6sseldd 3984 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ 𝐴)
8 liminfequzmpt2.c . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ 𝑉)
98elexd 3495 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ V)
107, 9jca 513 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (𝑗 ∈ 𝐴 ∧ 𝐢 ∈ V))
11 rabid 3453 . . . . . . . . . . 11 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↔ (𝑗 ∈ 𝐴 ∧ 𝐢 ∈ V))
1210, 11sylibr 233 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1312ex 414 . . . . . . . . 9 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) β†’ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}))
141, 13ralrimi 3255 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
15 nfcv 2904 . . . . . . . . 9 Ⅎ𝑗(β„€β‰₯β€˜πΎ)
16 nfrab1 3452 . . . . . . . . 9 Ⅎ𝑗{𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
1715, 16dfss3f 3974 . . . . . . . 8 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↔ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1814, 17sylibr 233 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1916, 15resmptf 6040 . . . . . . 7 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} β†’ ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
2018, 19syl 17 . . . . . 6 (πœ‘ β†’ ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
2120eqcomd 2739 . . . . 5 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢) = ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)))
2221fveq2d 6896 . . . 4 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)) = (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))))
232, 3eluzelz2d 44123 . . . . 5 (πœ‘ β†’ 𝐾 ∈ β„€)
24 eqid 2733 . . . . 5 (β„€β‰₯β€˜πΎ) = (β„€β‰₯β€˜πΎ)
25 liminfequzmpt2.o . . . . . . . 8 Ⅎ𝑗𝐴
262fvexi 6906 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 43823 . . . . . . 7 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ∈ V
2816, 27mptexf 43940 . . . . . 6 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V
2928a1i 11 . . . . 5 (πœ‘ β†’ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V)
30 eqid 2733 . . . . . . . 8 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)
3116, 30dmmptssf 43934 . . . . . . 7 dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
3225ssrab2f 43806 . . . . . . . 8 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} βŠ† 𝐴
33 uzssz 12843 . . . . . . . . 9 (β„€β‰₯β€˜π‘€) βŠ† β„€
342, 33eqsstri 4017 . . . . . . . 8 𝐴 βŠ† β„€
3532, 34sstri 3992 . . . . . . 7 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} βŠ† β„€
3631, 35sstri 3992 . . . . . 6 dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€
3736a1i 11 . . . . 5 (πœ‘ β†’ dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€)
3823, 24, 29, 37liminfresuz2 44503 . . . 4 (πœ‘ β†’ (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)))
3922, 38eqtr2d 2774 . . 3 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)))
40 liminfequzmpt2.b . . . . . . . . . . . . . . 15 𝐡 = (β„€β‰₯β€˜π‘)
41 liminfequzmpt2.e . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐾 ∈ 𝐡)
4240, 41uzssd2 44127 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐡)
4342adantr 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐡)
4443, 6sseldd 3984 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ 𝐡)
4544, 9jca 513 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (𝑗 ∈ 𝐡 ∧ 𝐢 ∈ V))
46 rabid 3453 . . . . . . . . . . 11 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↔ (𝑗 ∈ 𝐡 ∧ 𝐢 ∈ V))
4745, 46sylibr 233 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
4847ex 414 . . . . . . . . 9 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) β†’ 𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}))
491, 48ralrimi 3255 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
50 nfrab1 3452 . . . . . . . . 9 Ⅎ𝑗{𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
5115, 50dfss3f 3974 . . . . . . . 8 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↔ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
5249, 51sylibr 233 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
5350, 15resmptf 6040 . . . . . . 7 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} β†’ ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
5452, 53syl 17 . . . . . 6 (πœ‘ β†’ ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
5554eqcomd 2739 . . . . 5 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢) = ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)))
5655fveq2d 6896 . . . 4 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)) = (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))))
57 liminfequzmpt2.p . . . . . . . 8 Ⅎ𝑗𝐡
5840fvexi 6906 . . . . . . . 8 𝐡 ∈ V
5957, 58rabexf 43823 . . . . . . 7 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ∈ V
6050, 59mptexf 43940 . . . . . 6 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V
6160a1i 11 . . . . 5 (πœ‘ β†’ (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V)
62 eqid 2733 . . . . . . . 8 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)
6350, 62dmmptssf 43934 . . . . . . 7 dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
6457ssrab2f 43806 . . . . . . . 8 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} βŠ† 𝐡
65 uzssz 12843 . . . . . . . . 9 (β„€β‰₯β€˜π‘) βŠ† β„€
6640, 65eqsstri 4017 . . . . . . . 8 𝐡 βŠ† β„€
6764, 66sstri 3992 . . . . . . 7 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} βŠ† β„€
6863, 67sstri 3992 . . . . . 6 dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€
6968a1i 11 . . . . 5 (πœ‘ β†’ dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€)
7023, 24, 61, 69liminfresuz2 44503 . . . 4 (πœ‘ β†’ (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
7156, 70eqtr2d 2774 . . 3 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)))
7239, 71eqtr4d 2776 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
73 eqid 2733 . . . . 5 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} = {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
7425, 73mptssid 43944 . . . 4 (𝑗 ∈ 𝐴 ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)
7574fveq2i 6895 . . 3 (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢))
7675a1i 11 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)))
77 eqid 2733 . . . . 5 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} = {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
7857, 77mptssid 43944 . . . 4 (𝑗 ∈ 𝐡 ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)
7978fveq2i 6895 . . 3 (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢))
8079a1i 11 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
8172, 76, 803eqtr4d 2783 1 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542  β„²wnf 1786   ∈ wcel 2107  β„²wnfc 2884  βˆ€wral 3062  {crab 3433  Vcvv 3475   βŠ† wss 3949   ↦ cmpt 5232  dom cdm 5677   β†Ύ cres 5679  β€˜cfv 6544  β„€cz 12558  β„€β‰₯cuz 12822  lim infclsi 44467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-ico 13330  df-liminf 44468
This theorem is referenced by:  smfliminfmpt  45548
  Copyright terms: Public domain W3C validator