Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfequzmpt2 Structured version   Visualization version   GIF version

Theorem liminfequzmpt2 45238
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfequzmpt2.j β„²π‘—πœ‘
liminfequzmpt2.o Ⅎ𝑗𝐴
liminfequzmpt2.p Ⅎ𝑗𝐡
liminfequzmpt2.a 𝐴 = (β„€β‰₯β€˜π‘€)
liminfequzmpt2.b 𝐡 = (β„€β‰₯β€˜π‘)
liminfequzmpt2.k (πœ‘ β†’ 𝐾 ∈ 𝐴)
liminfequzmpt2.e (πœ‘ β†’ 𝐾 ∈ 𝐡)
liminfequzmpt2.c ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ 𝑉)
Assertion
Ref Expression
liminfequzmpt2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)))
Distinct variable group:   𝑗,𝐾
Allowed substitution hints:   πœ‘(𝑗)   𝐴(𝑗)   𝐡(𝑗)   𝐢(𝑗)   𝑀(𝑗)   𝑁(𝑗)   𝑉(𝑗)

Proof of Theorem liminfequzmpt2
StepHypRef Expression
1 liminfequzmpt2.j . . . . . . . . 9 β„²π‘—πœ‘
2 liminfequzmpt2.a . . . . . . . . . . . . . . 15 𝐴 = (β„€β‰₯β€˜π‘€)
3 liminfequzmpt2.k . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐾 ∈ 𝐴)
42, 3uzssd2 44858 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐴)
54adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐴)
6 simpr 483 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ (β„€β‰₯β€˜πΎ))
75, 6sseldd 3974 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ 𝐴)
8 liminfequzmpt2.c . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ 𝑉)
98elexd 3485 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝐢 ∈ V)
107, 9jca 510 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (𝑗 ∈ 𝐴 ∧ 𝐢 ∈ V))
11 rabid 3440 . . . . . . . . . . 11 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↔ (𝑗 ∈ 𝐴 ∧ 𝐢 ∈ V))
1210, 11sylibr 233 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1312ex 411 . . . . . . . . 9 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) β†’ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}))
141, 13ralrimi 3245 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
15 nfcv 2892 . . . . . . . . 9 Ⅎ𝑗(β„€β‰₯β€˜πΎ)
16 nfrab1 3439 . . . . . . . . 9 Ⅎ𝑗{𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
1715, 16dfss3f 3965 . . . . . . . 8 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↔ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1814, 17sylibr 233 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V})
1916, 15resmptf 6039 . . . . . . 7 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} β†’ ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
2018, 19syl 17 . . . . . 6 (πœ‘ β†’ ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
2120eqcomd 2731 . . . . 5 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢) = ((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)))
2221fveq2d 6894 . . . 4 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)) = (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))))
232, 3eluzelz2d 44854 . . . . 5 (πœ‘ β†’ 𝐾 ∈ β„€)
24 eqid 2725 . . . . 5 (β„€β‰₯β€˜πΎ) = (β„€β‰₯β€˜πΎ)
25 liminfequzmpt2.o . . . . . . . 8 Ⅎ𝑗𝐴
262fvexi 6904 . . . . . . . 8 𝐴 ∈ V
2725, 26rabexf 44561 . . . . . . 7 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ∈ V
2816, 27mptexf 44671 . . . . . 6 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V
2928a1i 11 . . . . 5 (πœ‘ β†’ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V)
30 eqid 2725 . . . . . . . 8 (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)
3116, 30dmmptssf 44665 . . . . . . 7 dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
3225ssrab2f 44544 . . . . . . . 8 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} βŠ† 𝐴
33 uzssz 12868 . . . . . . . . 9 (β„€β‰₯β€˜π‘€) βŠ† β„€
342, 33eqsstri 4008 . . . . . . . 8 𝐴 βŠ† β„€
3532, 34sstri 3983 . . . . . . 7 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} βŠ† β„€
3631, 35sstri 3983 . . . . . 6 dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€
3736a1i 11 . . . . 5 (πœ‘ β†’ dom (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€)
3823, 24, 29, 37liminfresuz2 45234 . . . 4 (πœ‘ β†’ (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)))
3922, 38eqtr2d 2766 . . 3 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)))
40 liminfequzmpt2.b . . . . . . . . . . . . . . 15 𝐡 = (β„€β‰₯β€˜π‘)
41 liminfequzmpt2.e . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐾 ∈ 𝐡)
4240, 41uzssd2 44858 . . . . . . . . . . . . . 14 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐡)
4342adantr 479 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (β„€β‰₯β€˜πΎ) βŠ† 𝐡)
4443, 6sseldd 3974 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ 𝐡)
4544, 9jca 510 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ (𝑗 ∈ 𝐡 ∧ 𝐢 ∈ V))
46 rabid 3440 . . . . . . . . . . 11 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↔ (𝑗 ∈ 𝐡 ∧ 𝐢 ∈ V))
4745, 46sylibr 233 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (β„€β‰₯β€˜πΎ)) β†’ 𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
4847ex 411 . . . . . . . . 9 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) β†’ 𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}))
491, 48ralrimi 3245 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
50 nfrab1 3439 . . . . . . . . 9 Ⅎ𝑗{𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
5115, 50dfss3f 3965 . . . . . . . 8 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↔ βˆ€π‘— ∈ (β„€β‰₯β€˜πΎ)𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
5249, 51sylibr 233 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V})
5350, 15resmptf 6039 . . . . . . 7 ((β„€β‰₯β€˜πΎ) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} β†’ ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
5452, 53syl 17 . . . . . 6 (πœ‘ β†’ ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)) = (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢))
5554eqcomd 2731 . . . . 5 (πœ‘ β†’ (𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢) = ((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ)))
5655fveq2d 6894 . . . 4 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)) = (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))))
57 liminfequzmpt2.p . . . . . . . 8 Ⅎ𝑗𝐡
5840fvexi 6904 . . . . . . . 8 𝐡 ∈ V
5957, 58rabexf 44561 . . . . . . 7 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ∈ V
6050, 59mptexf 44671 . . . . . 6 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V
6160a1i 11 . . . . 5 (πœ‘ β†’ (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) ∈ V)
62 eqid 2725 . . . . . . . 8 (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)
6350, 62dmmptssf 44665 . . . . . . 7 dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
6457ssrab2f 44544 . . . . . . . 8 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} βŠ† 𝐡
65 uzssz 12868 . . . . . . . . 9 (β„€β‰₯β€˜π‘) βŠ† β„€
6640, 65eqsstri 4008 . . . . . . . 8 𝐡 βŠ† β„€
6764, 66sstri 3983 . . . . . . 7 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} βŠ† β„€
6863, 67sstri 3983 . . . . . 6 dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€
6968a1i 11 . . . . 5 (πœ‘ β†’ dom (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) βŠ† β„€)
7023, 24, 61, 69liminfresuz2 45234 . . . 4 (πœ‘ β†’ (lim infβ€˜((𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢) β†Ύ (β„€β‰₯β€˜πΎ))) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
7156, 70eqtr2d 2766 . . 3 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ (β„€β‰₯β€˜πΎ) ↦ 𝐢)))
7239, 71eqtr4d 2768 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
73 eqid 2725 . . . . 5 {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} = {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V}
7425, 73mptssid 44675 . . . 4 (𝑗 ∈ 𝐴 ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)
7574fveq2i 6893 . . 3 (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢))
7675a1i 11 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐢 ∈ V} ↦ 𝐢)))
77 eqid 2725 . . . . 5 {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} = {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V}
7857, 77mptssid 44675 . . . 4 (𝑗 ∈ 𝐡 ↦ 𝐢) = (𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)
7978fveq2i 6893 . . 3 (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢))
8079a1i 11 . 2 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ {𝑗 ∈ 𝐡 ∣ 𝐢 ∈ V} ↦ 𝐢)))
8172, 76, 803eqtr4d 2775 1 (πœ‘ β†’ (lim infβ€˜(𝑗 ∈ 𝐴 ↦ 𝐢)) = (lim infβ€˜(𝑗 ∈ 𝐡 ↦ 𝐢)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533  β„²wnf 1777   ∈ wcel 2098  β„²wnfc 2875  βˆ€wral 3051  {crab 3419  Vcvv 3463   βŠ† wss 3941   ↦ cmpt 5227  dom cdm 5673   β†Ύ cres 5675  β€˜cfv 6543  β„€cz 12583  β„€β‰₯cuz 12847  lim infclsi 45198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-ico 13357  df-liminf 45199
This theorem is referenced by:  smfliminfmpt  46279
  Copyright terms: Public domain W3C validator