Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprss Structured version   Visualization version   GIF version

Theorem reprss 34628
Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprss.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
reprss (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))

Proof of Theorem reprss
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12131 . . . . . . . 8 ℕ ∈ V
21a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
3 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5262 . . . . . 6 (𝜑𝐴 ∈ V)
5 reprss.1 . . . . . 6 (𝜑𝐵𝐴)
6 mapss 8813 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐴) → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
74, 5, 6syl2anc 584 . . . . 5 (𝜑 → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
87sselda 3934 . . . 4 ((𝜑𝑐 ∈ (𝐵m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
98adantrr 717 . . 3 ((𝜑 ∧ (𝑐 ∈ (𝐵m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
109rabss3d 4031 . 2 (𝜑 → {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
115, 3sstrd 3945 . . 3 (𝜑𝐵 ⊆ ℕ)
12 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
13 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
1411, 12, 13reprval 34621 . 2 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
153, 12, 13reprval 34621 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
1610, 14, 153sstr4d 3990 1 (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  cn 12125  0cn0 12381  cz 12468  ..^cfzo 13554  Σcsu 15593  reprcrepr 34619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-neg 11347  df-nn 12126  df-z 12469  df-seq 13909  df-sum 15594  df-repr 34620
This theorem is referenced by:  hashreprin  34631  reprinfz1  34633  tgoldbachgtde  34671
  Copyright terms: Public domain W3C validator