Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprss Structured version   Visualization version   GIF version

Theorem reprss 34651
Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprss.1 (𝜑𝐵𝐴)
Assertion
Ref Expression
reprss (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))

Proof of Theorem reprss
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12138 . . . . . . . 8 ℕ ∈ V
21a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
3 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5264 . . . . . 6 (𝜑𝐴 ∈ V)
5 reprss.1 . . . . . 6 (𝜑𝐵𝐴)
6 mapss 8819 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐴) → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
74, 5, 6syl2anc 584 . . . . 5 (𝜑 → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
87sselda 3930 . . . 4 ((𝜑𝑐 ∈ (𝐵m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
98adantrr 717 . . 3 ((𝜑 ∧ (𝑐 ∈ (𝐵m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
109rabss3d 4030 . 2 (𝜑 → {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
115, 3sstrd 3941 . . 3 (𝜑𝐵 ⊆ ℕ)
12 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
13 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
1411, 12, 13reprval 34644 . 2 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
153, 12, 13reprval 34644 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
1610, 14, 153sstr4d 3986 1 (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898  cfv 6486  (class class class)co 7352  m cmap 8756  0cc0 11013  cn 12132  0cn0 12388  cz 12475  ..^cfzo 13556  Σcsu 15595  reprcrepr 34642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-map 8758  df-neg 11354  df-nn 12133  df-z 12476  df-seq 13911  df-sum 15596  df-repr 34643
This theorem is referenced by:  hashreprin  34654  reprinfz1  34656  tgoldbachgtde  34694
  Copyright terms: Public domain W3C validator