| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprss | Structured version Visualization version GIF version | ||
| Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprss.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| reprss | ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12192 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℕ ∈ V) |
| 3 | reprval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 4 | 2, 3 | ssexd 5279 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | reprss.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | mapss 8862 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) |
| 8 | 7 | sselda 3946 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 9 | 8 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 10 | 9 | rabss3d 4044 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 11 | 5, 3 | sstrd 3957 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 12 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 14 | 11, 12, 13 | reprval 34601 | . 2 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 15 | 3, 12, 13 | reprval 34601 | . 2 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 16 | 10, 14, 15 | 3sstr4d 4002 | 1 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 ..^cfzo 13615 Σcsu 15652 reprcrepr 34599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-neg 11408 df-nn 12187 df-z 12530 df-seq 13967 df-sum 15653 df-repr 34600 |
| This theorem is referenced by: hashreprin 34611 reprinfz1 34613 tgoldbachgtde 34651 |
| Copyright terms: Public domain | W3C validator |