![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprss | Structured version Visualization version GIF version |
Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
reprss.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
reprss | ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 12269 | . . . . . . . 8 ⊢ ℕ ∈ V | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℕ ∈ V) |
3 | reprval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
4 | 2, 3 | ssexd 5329 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | reprss.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | mapss 8927 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) | |
7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) |
8 | 7 | sselda 3994 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
9 | 8 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
10 | 9 | rabss3d 4090 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
11 | 5, 3 | sstrd 4005 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ) |
12 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
14 | 11, 12, 13 | reprval 34603 | . 2 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
15 | 3, 12, 13 | reprval 34603 | . 2 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
16 | 10, 14, 15 | 3sstr4d 4042 | 1 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 {crab 3432 Vcvv 3477 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 0cc0 11152 ℕcn 12263 ℕ0cn0 12523 ℤcz 12610 ..^cfzo 13690 Σcsu 15718 reprcrepr 34601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-map 8866 df-neg 11492 df-nn 12264 df-z 12611 df-seq 14039 df-sum 15719 df-repr 34602 |
This theorem is referenced by: hashreprin 34613 reprinfz1 34615 tgoldbachgtde 34653 |
Copyright terms: Public domain | W3C validator |