| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprss | Structured version Visualization version GIF version | ||
| Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprss.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| reprss | ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12131 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℕ ∈ V) |
| 3 | reprval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 4 | 2, 3 | ssexd 5262 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | reprss.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | mapss 8813 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) |
| 8 | 7 | sselda 3934 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 9 | 8 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 10 | 9 | rabss3d 4031 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 11 | 5, 3 | sstrd 3945 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 12 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 14 | 11, 12, 13 | reprval 34621 | . 2 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 15 | 3, 12, 13 | reprval 34621 | . 2 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 16 | 10, 14, 15 | 3sstr4d 3990 | 1 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 0cc0 11006 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ..^cfzo 13554 Σcsu 15593 reprcrepr 34619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-neg 11347 df-nn 12126 df-z 12469 df-seq 13909 df-sum 15594 df-repr 34620 |
| This theorem is referenced by: hashreprin 34631 reprinfz1 34633 tgoldbachgtde 34671 |
| Copyright terms: Public domain | W3C validator |