| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reprss | Structured version Visualization version GIF version | ||
| Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| reprss.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| reprss | ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnex 12138 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℕ ∈ V) |
| 3 | reprval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 4 | 2, 3 | ssexd 5264 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | reprss.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | mapss 8819 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) |
| 8 | 7 | sselda 3930 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 9 | 8 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
| 10 | 9 | rabss3d 4030 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 11 | 5, 3 | sstrd 3941 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 12 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
| 14 | 11, 12, 13 | reprval 34644 | . 2 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 15 | 3, 12, 13 | reprval 34644 | . 2 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
| 16 | 10, 14, 15 | 3sstr4d 3986 | 1 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 0cc0 11013 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 ..^cfzo 13556 Σcsu 15595 reprcrepr 34642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-map 8758 df-neg 11354 df-nn 12133 df-z 12476 df-seq 13911 df-sum 15596 df-repr 34643 |
| This theorem is referenced by: hashreprin 34654 reprinfz1 34656 tgoldbachgtde 34694 |
| Copyright terms: Public domain | W3C validator |