Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprss Structured version   Visualization version   GIF version

 Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprss (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))

Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11635 . . . . . . . 8 ℕ ∈ V
21a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
3 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
42, 3ssexd 5195 . . . . . 6 (𝜑𝐴 ∈ V)
5 reprss.1 . . . . . 6 (𝜑𝐵𝐴)
6 mapss 8440 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐴) → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
74, 5, 6syl2anc 587 . . . . 5 (𝜑 → (𝐵m (0..^𝑆)) ⊆ (𝐴m (0..^𝑆)))
87sselda 3918 . . . 4 ((𝜑𝑐 ∈ (𝐵m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
98adantrr 716 . . 3 ((𝜑 ∧ (𝑐 ∈ (𝐵m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)) → 𝑐 ∈ (𝐴m (0..^𝑆)))
109rabss3d 30289 . 2 (𝜑 → {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
115, 3sstrd 3928 . . 3 (𝜑𝐵 ⊆ ℕ)
12 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
13 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
1411, 12, 13reprval 31995 . 2 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
153, 12, 13reprval 31995 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
1610, 14, 153sstr4d 3965 1 (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  {crab 3113  Vcvv 3444   ⊆ wss 3884  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393  0cc0 10530  ℕcn 11629  ℕ0cn0 11889  ℤcz 11973  ..^cfzo 13032  Σcsu 15038  reprcrepr 31993 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-addcl 10590 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-map 8395  df-neg 10866  df-nn 11630  df-z 11974  df-seq 13369  df-sum 15039  df-repr 31994 This theorem is referenced by:  hashreprin  32005  reprinfz1  32007  tgoldbachgtde  32045
 Copyright terms: Public domain W3C validator