Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprss | Structured version Visualization version GIF version |
Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
reprss.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
reprss | ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnex 11979 | . . . . . . . 8 ⊢ ℕ ∈ V | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℕ ∈ V) |
3 | reprval.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
4 | 2, 3 | ssexd 5248 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | reprss.1 | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | mapss 8677 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ⊆ 𝐴) → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) | |
7 | 4, 5, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐵 ↑m (0..^𝑆)) ⊆ (𝐴 ↑m (0..^𝑆))) |
8 | 7 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵 ↑m (0..^𝑆))) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
9 | 8 | adantrr 714 | . . 3 ⊢ ((𝜑 ∧ (𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) → 𝑐 ∈ (𝐴 ↑m (0..^𝑆))) |
10 | 9 | rabss3d 30861 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ⊆ {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
11 | 5, 3 | sstrd 3931 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ) |
12 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
14 | 11, 12, 13 | reprval 32590 | . 2 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
15 | 3, 12, 13 | reprval 32590 | . 2 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
16 | 10, 14, 15 | 3sstr4d 3968 | 1 ⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ⊆ (𝐴(repr‘𝑆)𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ..^cfzo 13382 Σcsu 15397 reprcrepr 32588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-map 8617 df-neg 11208 df-nn 11974 df-z 12320 df-seq 13722 df-sum 15398 df-repr 32589 |
This theorem is referenced by: hashreprin 32600 reprinfz1 32602 tgoldbachgtde 32640 |
Copyright terms: Public domain | W3C validator |