Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima2 Structured version   Visualization version   GIF version

Theorem xpinpreima2 33870
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))

Proof of Theorem xpinpreima2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 xp2 7984 . . . 4 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 xpss 5647 . . . . . 6 (𝐸 × 𝐹) ⊆ (V × V)
3 rabss2 4037 . . . . . 6 ((𝐸 × 𝐹) ⊆ (V × V) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
42, 3mp1i 13 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
5 simprl 770 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (V × V))
6 simpll 766 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐴𝐸)
7 simprrl 780 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐴)
86, 7sseldd 3944 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐸)
9 simplr 768 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐵𝐹)
10 simprrr 781 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐵)
119, 10sseldd 3944 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐹)
128, 11jca 511 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹))
13 elxp7 7982 . . . . . . 7 (𝑟 ∈ (𝐸 × 𝐹) ↔ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹)))
145, 12, 13sylanbrc 583 . . . . . 6 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (𝐸 × 𝐹))
1514rabss3d 4040 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
164, 15eqssd 3961 . . . 4 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
171, 16eqtr4id 2783 . . 3 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
18 inrab 4275 . . 3 ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
1917, 18eqtr4di 2782 . 2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}))
20 f1stres 7971 . . . . 5 (1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸
21 ffn 6670 . . . . 5 ((1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸 → (1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
22 fncnvima2 7015 . . . . 5 ((1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴})
2320, 21, 22mp2b 10 . . . 4 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴}
24 fvres 6859 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹))‘𝑟) = (1st𝑟))
2524eleq1d 2813 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
2625rabbiia 3406 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
2723, 26eqtri 2752 . . 3 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
28 f2ndres 7972 . . . . 5 (2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹
29 ffn 6670 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹 → (2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
30 fncnvima2 7015 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵})
3128, 29, 30mp2b 10 . . . 4 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵}
32 fvres 6859 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹))‘𝑟) = (2nd𝑟))
3332eleq1d 2813 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
3433rabbiia 3406 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3531, 34eqtri 2752 . . 3 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3627, 35ineq12i 4177 . 2 (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵})
3719, 36eqtr4di 2782 1 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cin 3910  wss 3911   × cxp 5629  ccnv 5630  cres 5633  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  cnre2csqima  33874  sxbrsigalem2  34250  sxbrsiga  34254
  Copyright terms: Public domain W3C validator