Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima2 Structured version   Visualization version   GIF version

Theorem xpinpreima2 33943
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))

Proof of Theorem xpinpreima2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 xp2 8030 . . . 4 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 xpss 5675 . . . . . 6 (𝐸 × 𝐹) ⊆ (V × V)
3 rabss2 4058 . . . . . 6 ((𝐸 × 𝐹) ⊆ (V × V) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
42, 3mp1i 13 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
5 simprl 770 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (V × V))
6 simpll 766 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐴𝐸)
7 simprrl 780 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐴)
86, 7sseldd 3964 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐸)
9 simplr 768 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐵𝐹)
10 simprrr 781 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐵)
119, 10sseldd 3964 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐹)
128, 11jca 511 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹))
13 elxp7 8028 . . . . . . 7 (𝑟 ∈ (𝐸 × 𝐹) ↔ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹)))
145, 12, 13sylanbrc 583 . . . . . 6 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (𝐸 × 𝐹))
1514rabss3d 4061 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
164, 15eqssd 3981 . . . 4 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
171, 16eqtr4id 2790 . . 3 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
18 inrab 4296 . . 3 ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
1917, 18eqtr4di 2789 . 2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}))
20 f1stres 8017 . . . . 5 (1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸
21 ffn 6711 . . . . 5 ((1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸 → (1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
22 fncnvima2 7056 . . . . 5 ((1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴})
2320, 21, 22mp2b 10 . . . 4 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴}
24 fvres 6900 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹))‘𝑟) = (1st𝑟))
2524eleq1d 2820 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
2625rabbiia 3424 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
2723, 26eqtri 2759 . . 3 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
28 f2ndres 8018 . . . . 5 (2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹
29 ffn 6711 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹 → (2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
30 fncnvima2 7056 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵})
3128, 29, 30mp2b 10 . . . 4 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵}
32 fvres 6900 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹))‘𝑟) = (2nd𝑟))
3332eleq1d 2820 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
3433rabbiia 3424 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3531, 34eqtri 2759 . . 3 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3627, 35ineq12i 4198 . 2 (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵})
3719, 36eqtr4di 2789 1 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cin 3930  wss 3931   × cxp 5657  ccnv 5658  cres 5661  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by:  cnre2csqima  33947  sxbrsigalem2  34323  sxbrsiga  34327
  Copyright terms: Public domain W3C validator