Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima2 Structured version   Visualization version   GIF version

Theorem xpinpreima2 31260
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))

Proof of Theorem xpinpreima2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 xp2 7708 . . . 4 (𝐴 × 𝐵) = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
2 xpss 5535 . . . . . 6 (𝐸 × 𝐹) ⊆ (V × V)
3 rabss2 4005 . . . . . 6 ((𝐸 × 𝐹) ⊆ (V × V) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
42, 3mp1i 13 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
5 simprl 770 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (V × V))
6 simpll 766 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐴𝐸)
7 simprrl 780 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐴)
86, 7sseldd 3916 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (1st𝑟) ∈ 𝐸)
9 simplr 768 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝐵𝐹)
10 simprrr 781 . . . . . . . . 9 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐵)
119, 10sseldd 3916 . . . . . . . 8 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → (2nd𝑟) ∈ 𝐹)
128, 11jca 515 . . . . . . 7 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹))
13 elxp7 7706 . . . . . . 7 (𝑟 ∈ (𝐸 × 𝐹) ↔ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐸 ∧ (2nd𝑟) ∈ 𝐹)))
145, 12, 13sylanbrc 586 . . . . . 6 (((𝐴𝐸𝐵𝐹) ∧ (𝑟 ∈ (V × V) ∧ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵))) → 𝑟 ∈ (𝐸 × 𝐹))
1514rabss3d 30285 . . . . 5 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} ⊆ {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
164, 15eqssd 3932 . . . 4 ((𝐴𝐸𝐵𝐹) → {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)} = {𝑟 ∈ (V × V) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
171, 16eqtr4id 2852 . . 3 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)})
18 inrab 4227 . . 3 ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st𝑟) ∈ 𝐴 ∧ (2nd𝑟) ∈ 𝐵)}
1917, 18eqtr4di 2851 . 2 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}))
20 f1stres 7695 . . . . 5 (1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸
21 ffn 6487 . . . . 5 ((1st ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐸 → (1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
22 fncnvima2 6808 . . . . 5 ((1st ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴})
2320, 21, 22mp2b 10 . . . 4 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴}
24 fvres 6664 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((1st ↾ (𝐸 × 𝐹))‘𝑟) = (1st𝑟))
2524eleq1d 2874 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴 ↔ (1st𝑟) ∈ 𝐴))
2625rabbiia 3419 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((1st ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐴} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
2723, 26eqtri 2821 . . 3 ((1st ↾ (𝐸 × 𝐹)) “ 𝐴) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴}
28 f2ndres 7696 . . . . 5 (2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹
29 ffn 6487 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)):(𝐸 × 𝐹)⟶𝐹 → (2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹))
30 fncnvima2 6808 . . . . 5 ((2nd ↾ (𝐸 × 𝐹)) Fn (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵})
3128, 29, 30mp2b 10 . . . 4 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵}
32 fvres 6664 . . . . . 6 (𝑟 ∈ (𝐸 × 𝐹) → ((2nd ↾ (𝐸 × 𝐹))‘𝑟) = (2nd𝑟))
3332eleq1d 2874 . . . . 5 (𝑟 ∈ (𝐸 × 𝐹) → (((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵 ↔ (2nd𝑟) ∈ 𝐵))
3433rabbiia 3419 . . . 4 {𝑟 ∈ (𝐸 × 𝐹) ∣ ((2nd ↾ (𝐸 × 𝐹))‘𝑟) ∈ 𝐵} = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3531, 34eqtri 2821 . . 3 ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵) = {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵}
3627, 35ineq12i 4137 . 2 (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)) = ({𝑟 ∈ (𝐸 × 𝐹) ∣ (1st𝑟) ∈ 𝐴} ∩ {𝑟 ∈ (𝐸 × 𝐹) ∣ (2nd𝑟) ∈ 𝐵})
3719, 36eqtr4di 2851 1 ((𝐴𝐸𝐵𝐹) → (𝐴 × 𝐵) = (((1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ ((2nd ↾ (𝐸 × 𝐹)) “ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cin 3880  wss 3881   × cxp 5517  ccnv 5518  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-1st 7671  df-2nd 7672
This theorem is referenced by:  cnre2csqima  31264  sxbrsigalem2  31654  sxbrsiga  31658
  Copyright terms: Public domain W3C validator