MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknon2num Structured version   Visualization version   GIF version

Theorem clwlknon2num 29610
Description: There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 29347, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
clwlknon2num ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = 𝐾)
Distinct variable groups:   𝑀,𝐺   𝑀,𝑉   𝑀,𝑋   𝑀,𝐾

Proof of Theorem clwlknon2num
StepHypRef Expression
1 rusgrusgr 28810 . . . . . 6 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
2 usgruspgr 28427 . . . . . 6 (𝐺 ∈ USGraph β†’ 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USPGraph)
433ad2ant2 1134 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ 𝐺 ∈ USPGraph)
5 clwlknon2num.v . . . . . . 7 𝑉 = (Vtxβ€˜πΊ)
65eleq2i 2825 . . . . . 6 (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtxβ€˜πΊ))
76biimpi 215 . . . . 5 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
873ad2ant3 1135 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
9 2nn 12281 . . . . 5 2 ∈ β„•
109a1i 11 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ 2 ∈ β„•)
11 clwwlknonclwlknonen 29605 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ 2 ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)2))
124, 8, 10, 11syl3anc 1371 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)2))
131anim2i 617 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1413ancomd 462 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
155isfusgr 28564 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1614, 15sylibr 233 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 ∈ FinUSGraph)
17163adant3 1132 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ 𝐺 ∈ FinUSGraph)
18 2nn0 12485 . . . . . . 7 2 ∈ β„•0
1918a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ 2 ∈ β„•0)
20 wlksnfi 29150 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 2 ∈ β„•0) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 2} ∈ Fin)
2117, 19, 20syl2anc 584 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 2} ∈ Fin)
22 clwlkswks 29022 . . . . . . 7 (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ)
2322a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ))
24 simp2l 1199 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ 𝑀 ∈ (ClWalksβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π‘€)) = 2)
2523, 24rabssrabd 4080 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} βŠ† {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 2})
2621, 25ssfid 9263 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ Fin)
275clwwlknonfin 29336 . . . . 5 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)2) ∈ Fin)
28273ad2ant1 1133 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)2) ∈ Fin)
29 hashen 14303 . . . 4 (({𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ Fin ∧ (𝑋(ClWWalksNOnβ€˜πΊ)2) ∈ Fin) β†’ ((β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)2)) ↔ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)2)))
3026, 28, 29syl2anc 584 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ ((β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)2)) ↔ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)2)))
3112, 30mpbird 256 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)2)))
327anim2i 617 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtxβ€˜πΊ)))
33323adant1 1130 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtxβ€˜πΊ)))
34 clwwlknon2num 29347 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtxβ€˜πΊ)) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)2)) = 𝐾)
3533, 34syl 17 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)2)) = 𝐾)
3631, 35eqtrd 2772 1 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 2 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970   β‰ˆ cen 8932  Fincfn 8935  0cc0 11106  β„•cn 12208  2c2 12263  β„•0cn0 12468  β™―chash 14286  Vtxcvtx 28245  USPGraphcuspgr 28397  USGraphcusgr 28398  FinUSGraphcfusgr 28562   RegUSGraph crusgr 28802  Walkscwlks 28842  ClWalkscclwlks 29016  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-edg 28297  df-uhgr 28307  df-ushgr 28308  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-fusgr 28563  df-nbgr 28579  df-vtxdg 28712  df-rgr 28803  df-rusgr 28804  df-wlks 28845  df-clwlks 29017  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  numclwlk1lem1  29611
  Copyright terms: Public domain W3C validator