MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknon2num Structured version   Visualization version   GIF version

Theorem clwlknon2num 27911
Description: There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 27623, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwlknon2num ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝐾

Proof of Theorem clwlknon2num
StepHypRef Expression
1 rusgrusgr 27039 . . . . . 6 (𝐺RegUSGraph𝐾𝐺 ∈ USGraph)
2 usgruspgr 26656 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺RegUSGraph𝐾𝐺 ∈ USPGraph)
433ad2ant2 1114 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → 𝐺 ∈ USPGraph)
5 clwlknon2num.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65eleq2i 2851 . . . . . 6 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
76biimpi 208 . . . . 5 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
873ad2ant3 1115 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → 𝑋 ∈ (Vtx‘𝐺))
9 2nn 11506 . . . . 5 2 ∈ ℕ
109a1i 11 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → 2 ∈ ℕ)
11 clwwlknonclwlknonen 27902 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ 2 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
124, 8, 10, 11syl3anc 1351 . . 3 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
131anim2i 607 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1413ancomd 454 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
155isfusgr 26793 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1614, 15sylibr 226 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph)
17163adant3 1112 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → 𝐺 ∈ FinUSGraph)
18 2nn0 11719 . . . . . . 7 2 ∈ ℕ0
1918a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → 2 ∈ ℕ0)
20 wlksnfi 27397 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 2 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
2117, 19, 20syl2anc 576 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
22 clwlkswks 27255 . . . . . . 7 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2322a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
24 simp2l 1179 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) ∧ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 2)
2523, 24rabssrabd 3944 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2})
2621, 25ssfid 8528 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
275clwwlknonfin 27612 . . . . 5 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
28273ad2ant1 1113 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
29 hashen 13515 . . . 4 (({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3026, 28, 29syl2anc 576 . . 3 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3112, 30mpbird 249 . 2 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)))
327anim2i 607 . . . 4 ((𝐺RegUSGraph𝐾𝑋𝑉) → (𝐺RegUSGraph𝐾𝑋 ∈ (Vtx‘𝐺)))
33323adant1 1110 . . 3 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (𝐺RegUSGraph𝐾𝑋 ∈ (Vtx‘𝐺)))
34 clwwlknon2num 27623 . . 3 ((𝐺RegUSGraph𝐾𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3533, 34syl 17 . 2 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3631, 35eqtrd 2808 1 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  {crab 3086  wss 3825   class class class wbr 4923  cfv 6182  (class class class)co 6970  1st c1st 7492  2nd c2nd 7493  cen 8295  Fincfn 8298  0cc0 10327  cn 11431  2c2 11488  0cn0 11700  chash 13498  Vtxcvtx 26474  USPGraphcuspgr 26626  USGraphcusgr 26627  FinUSGraphcfusgr 26791  RegUSGraphcrusgr 27031  Walkscwlks 27071  ClWalkscclwlks 27249  ClWWalksNOncclwwlknon 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-ifp 1044  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-pm 8201  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-dju 9116  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-rp 12198  df-xadd 12318  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-word 13663  df-lsw 13716  df-concat 13724  df-s1 13749  df-substr 13794  df-pfx 13843  df-edg 26526  df-uhgr 26536  df-ushgr 26537  df-upgr 26560  df-umgr 26561  df-uspgr 26628  df-usgr 26629  df-fusgr 26792  df-nbgr 26808  df-vtxdg 26941  df-rgr 27032  df-rusgr 27033  df-wlks 27074  df-clwlks 27250  df-wwlks 27306  df-wwlksn 27307  df-clwwlk 27478  df-clwwlkn 27530  df-clwwlknon 27606
This theorem is referenced by:  numclwlk1lem1  27912
  Copyright terms: Public domain W3C validator