MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknon2num Structured version   Visualization version   GIF version

Theorem clwlknon2num 30397
Description: There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 30134, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwlknon2num ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝐾

Proof of Theorem clwlknon2num
StepHypRef Expression
1 rusgrusgr 29597 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
2 usgruspgr 29212 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
433ad2ant2 1133 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝐺 ∈ USPGraph)
5 clwlknon2num.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65eleq2i 2831 . . . . . 6 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
76biimpi 216 . . . . 5 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
873ad2ant3 1134 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝑋 ∈ (Vtx‘𝐺))
9 2nn 12337 . . . . 5 2 ∈ ℕ
109a1i 11 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 2 ∈ ℕ)
11 clwwlknonclwlknonen 30392 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ 2 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
124, 8, 10, 11syl3anc 1370 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
131anim2i 617 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1413ancomd 461 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
155isfusgr 29350 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1614, 15sylibr 234 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
17163adant3 1131 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝐺 ∈ FinUSGraph)
18 2nn0 12541 . . . . . . 7 2 ∈ ℕ0
1918a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 2 ∈ ℕ0)
20 wlksnfi 29937 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 2 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
2117, 19, 20syl2anc 584 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
22 clwlkswks 29809 . . . . . . 7 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2322a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
24 simp2l 1198 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) ∧ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 2)
2523, 24rabssrabd 4093 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2})
2621, 25ssfid 9299 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
275clwwlknonfin 30123 . . . . 5 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
28273ad2ant1 1132 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
29 hashen 14383 . . . 4 (({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3026, 28, 29syl2anc 584 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3112, 30mpbird 257 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)))
327anim2i 617 . . . 4 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)))
33323adant1 1129 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)))
34 clwwlknon2num 30134 . . 3 ((𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3533, 34syl 17 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3631, 35eqtrd 2775 1 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  cen 8981  Fincfn 8984  0cc0 11153  cn 12264  2c2 12319  0cn0 12524  chash 14366  Vtxcvtx 29028  USPGraphcuspgr 29180  USGraphcusgr 29181  FinUSGraphcfusgr 29348   RegUSGraph crusgr 29589  Walkscwlks 29629  ClWalkscclwlks 29803  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-edg 29080  df-uhgr 29090  df-ushgr 29091  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-fusgr 29349  df-nbgr 29365  df-vtxdg 29499  df-rgr 29590  df-rusgr 29591  df-wlks 29632  df-clwlks 29804  df-wwlks 29860  df-wwlksn 29861  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by:  numclwlk1lem1  30398
  Copyright terms: Public domain W3C validator