Step | Hyp | Ref
| Expression |
1 | | rusgrusgr 28810 |
. . . . . 6
β’ (πΊ RegUSGraph πΎ β πΊ β USGraph) |
2 | | usgruspgr 28427 |
. . . . . 6
β’ (πΊ β USGraph β πΊ β
USPGraph) |
3 | 1, 2 | syl 17 |
. . . . 5
β’ (πΊ RegUSGraph πΎ β πΊ β USPGraph) |
4 | 3 | 3ad2ant2 1134 |
. . . 4
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β πΊ β USPGraph) |
5 | | clwlknon2num.v |
. . . . . . 7
β’ π = (VtxβπΊ) |
6 | 5 | eleq2i 2825 |
. . . . . 6
β’ (π β π β π β (VtxβπΊ)) |
7 | 6 | biimpi 215 |
. . . . 5
β’ (π β π β π β (VtxβπΊ)) |
8 | 7 | 3ad2ant3 1135 |
. . . 4
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β π β (VtxβπΊ)) |
9 | | 2nn 12281 |
. . . . 5
β’ 2 β
β |
10 | 9 | a1i 11 |
. . . 4
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β 2 β β) |
11 | | clwwlknonclwlknonen 29605 |
. . . 4
β’ ((πΊ β USPGraph β§ π β (VtxβπΊ) β§ 2 β β) β
{π€ β
(ClWalksβπΊ) β£
((β―β(1st βπ€)) = 2 β§ ((2nd βπ€)β0) = π)} β (π(ClWWalksNOnβπΊ)2)) |
12 | 4, 8, 10, 11 | syl3anc 1371 |
. . 3
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β {π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)} β (π(ClWWalksNOnβπΊ)2)) |
13 | 1 | anim2i 617 |
. . . . . . . . 9
β’ ((π β Fin β§ πΊ RegUSGraph πΎ) β (π β Fin β§ πΊ β USGraph)) |
14 | 13 | ancomd 462 |
. . . . . . . 8
β’ ((π β Fin β§ πΊ RegUSGraph πΎ) β (πΊ β USGraph β§ π β Fin)) |
15 | 5 | isfusgr 28564 |
. . . . . . . 8
β’ (πΊ β FinUSGraph β (πΊ β USGraph β§ π β Fin)) |
16 | 14, 15 | sylibr 233 |
. . . . . . 7
β’ ((π β Fin β§ πΊ RegUSGraph πΎ) β πΊ β FinUSGraph) |
17 | 16 | 3adant3 1132 |
. . . . . 6
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β πΊ β FinUSGraph) |
18 | | 2nn0 12485 |
. . . . . . 7
β’ 2 β
β0 |
19 | 18 | a1i 11 |
. . . . . 6
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β 2 β
β0) |
20 | | wlksnfi 29150 |
. . . . . 6
β’ ((πΊ β FinUSGraph β§ 2
β β0) β {π€ β (WalksβπΊ) β£ (β―β(1st
βπ€)) = 2} β
Fin) |
21 | 17, 19, 20 | syl2anc 584 |
. . . . 5
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β {π€ β (WalksβπΊ) β£ (β―β(1st
βπ€)) = 2} β
Fin) |
22 | | clwlkswks 29022 |
. . . . . . 7
β’
(ClWalksβπΊ)
β (WalksβπΊ) |
23 | 22 | a1i 11 |
. . . . . 6
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (ClWalksβπΊ) β (WalksβπΊ)) |
24 | | simp2l 1199 |
. . . . . 6
β’ (((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β§ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π) β§ π€ β (ClWalksβπΊ)) β (β―β(1st
βπ€)) =
2) |
25 | 23, 24 | rabssrabd 4080 |
. . . . 5
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β {π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)} β {π€ β (WalksβπΊ) β£ (β―β(1st
βπ€)) =
2}) |
26 | 21, 25 | ssfid 9263 |
. . . 4
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β {π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)} β Fin) |
27 | 5 | clwwlknonfin 29336 |
. . . . 5
β’ (π β Fin β (π(ClWWalksNOnβπΊ)2) β Fin) |
28 | 27 | 3ad2ant1 1133 |
. . . 4
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (π(ClWWalksNOnβπΊ)2) β Fin) |
29 | | hashen 14303 |
. . . 4
β’ (({π€ β (ClWalksβπΊ) β£
((β―β(1st βπ€)) = 2 β§ ((2nd βπ€)β0) = π)} β Fin β§ (π(ClWWalksNOnβπΊ)2) β Fin) β
((β―β{π€ β
(ClWalksβπΊ) β£
((β―β(1st βπ€)) = 2 β§ ((2nd βπ€)β0) = π)}) = (β―β(π(ClWWalksNOnβπΊ)2)) β {π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)} β (π(ClWWalksNOnβπΊ)2))) |
30 | 26, 28, 29 | syl2anc 584 |
. . 3
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β ((β―β{π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)}) = (β―β(π(ClWWalksNOnβπΊ)2)) β {π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)} β (π(ClWWalksNOnβπΊ)2))) |
31 | 12, 30 | mpbird 256 |
. 2
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (β―β{π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)}) = (β―β(π(ClWWalksNOnβπΊ)2))) |
32 | 7 | anim2i 617 |
. . . 4
β’ ((πΊ RegUSGraph πΎ β§ π β π) β (πΊ RegUSGraph πΎ β§ π β (VtxβπΊ))) |
33 | 32 | 3adant1 1130 |
. . 3
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (πΊ RegUSGraph πΎ β§ π β (VtxβπΊ))) |
34 | | clwwlknon2num 29347 |
. . 3
β’ ((πΊ RegUSGraph πΎ β§ π β (VtxβπΊ)) β (β―β(π(ClWWalksNOnβπΊ)2)) = πΎ) |
35 | 33, 34 | syl 17 |
. 2
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (β―β(π(ClWWalksNOnβπΊ)2)) = πΎ) |
36 | 31, 35 | eqtrd 2772 |
1
β’ ((π β Fin β§ πΊ RegUSGraph πΎ β§ π β π) β (β―β{π€ β (ClWalksβπΊ) β£ ((β―β(1st
βπ€)) = 2 β§
((2nd βπ€)β0) = π)}) = πΎ) |