MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlknon2num Structured version   Visualization version   GIF version

Theorem clwlknon2num 28633
Description: There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 28370, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwlknon2num ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝐾

Proof of Theorem clwlknon2num
StepHypRef Expression
1 rusgrusgr 27834 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
2 usgruspgr 27451 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
433ad2ant2 1132 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝐺 ∈ USPGraph)
5 clwlknon2num.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
65eleq2i 2830 . . . . . 6 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
76biimpi 215 . . . . 5 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
873ad2ant3 1133 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝑋 ∈ (Vtx‘𝐺))
9 2nn 11976 . . . . 5 2 ∈ ℕ
109a1i 11 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 2 ∈ ℕ)
11 clwwlknonclwlknonen 28628 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ 2 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
124, 8, 10, 11syl3anc 1369 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))
131anim2i 616 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1413ancomd 461 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
155isfusgr 27588 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1614, 15sylibr 233 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
17163adant3 1130 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 𝐺 ∈ FinUSGraph)
18 2nn0 12180 . . . . . . 7 2 ∈ ℕ0
1918a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → 2 ∈ ℕ0)
20 wlksnfi 28173 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 2 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
2117, 19, 20syl2anc 583 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2} ∈ Fin)
22 clwlkswks 28045 . . . . . . 7 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2322a1i 11 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
24 simp2l 1197 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) ∧ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 2)
2523, 24rabssrabd 4012 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 2})
2621, 25ssfid 8971 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
275clwwlknonfin 28359 . . . . 5 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
28273ad2ant1 1131 . . . 4 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin)
29 hashen 13989 . . . 4 (({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3026, 28, 29syl2anc 583 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)))
3112, 30mpbird 256 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)))
327anim2i 616 . . . 4 ((𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)))
33323adant1 1128 . . 3 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)))
34 clwwlknon2num 28370 . . 3 ((𝐺 RegUSGraph 𝐾𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3533, 34syl 17 . 2 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾)
3631, 35eqtrd 2778 1 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾𝑋𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 2 ∧ ((2nd𝑤)‘0) = 𝑋)}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cen 8688  Fincfn 8691  0cc0 10802  cn 11903  2c2 11958  0cn0 12163  chash 13972  Vtxcvtx 27269  USPGraphcuspgr 27421  USGraphcusgr 27422  FinUSGraphcfusgr 27586   RegUSGraph crusgr 27826  Walkscwlks 27866  ClWalkscclwlks 28039  ClWWalksNOncclwwlknon 28352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-fusgr 27587  df-nbgr 27603  df-vtxdg 27736  df-rgr 27827  df-rusgr 27828  df-wlks 27869  df-clwlks 28040  df-wwlks 28096  df-wwlksn 28097  df-clwwlk 28247  df-clwwlkn 28290  df-clwwlknon 28353
This theorem is referenced by:  numclwlk1lem1  28634
  Copyright terms: Public domain W3C validator