![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlknon2num | Structured version Visualization version GIF version |
Description: There are k walks of length 2 on each vertex 𝑋 in a k-regular simple graph. Variant of clwwlknon2num 27623, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.) |
Ref | Expression |
---|---|
clwlknon2num.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
clwlknon2num | ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrusgr 27039 | . . . . . 6 ⊢ (𝐺RegUSGraph𝐾 → 𝐺 ∈ USGraph) | |
2 | usgruspgr 26656 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐺RegUSGraph𝐾 → 𝐺 ∈ USPGraph) |
4 | 3 | 3ad2ant2 1114 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ USPGraph) |
5 | clwlknon2num.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | 5 | eleq2i 2851 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
7 | 6 | biimpi 208 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Vtx‘𝐺)) |
8 | 7 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (Vtx‘𝐺)) |
9 | 2nn 11506 | . . . . 5 ⊢ 2 ∈ ℕ | |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → 2 ∈ ℕ) |
11 | clwwlknonclwlknonen 27902 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ 2 ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)) | |
12 | 4, 8, 10, 11 | syl3anc 1351 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2)) |
13 | 1 | anim2i 607 | . . . . . . . . 9 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph)) |
14 | 13 | ancomd 454 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
15 | 5 | isfusgr 26793 | . . . . . . . 8 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
16 | 14, 15 | sylibr 226 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph) |
17 | 16 | 3adant3 1112 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ FinUSGraph) |
18 | 2nn0 11719 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
19 | 18 | a1i 11 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → 2 ∈ ℕ0) |
20 | wlksnfi 27397 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 2 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 2} ∈ Fin) | |
21 | 17, 19, 20 | syl2anc 576 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 2} ∈ Fin) |
22 | clwlkswks 27255 | . . . . . . 7 ⊢ (ClWalks‘𝐺) ⊆ (Walks‘𝐺) | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺)) |
24 | simp2l 1179 | . . . . . 6 ⊢ (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st ‘𝑤)) = 2) | |
25 | 23, 24 | rabssrabd 3944 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st ‘𝑤)) = 2}) |
26 | 21, 25 | ssfid 8528 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∈ Fin) |
27 | 5 | clwwlknonfin 27612 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) |
28 | 27 | 3ad2ant1 1113 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) |
29 | hashen 13515 | . . . 4 ⊢ (({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)2) ∈ Fin) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))) | |
30 | 26, 28, 29 | syl2anc 576 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → ((♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) ↔ {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)2))) |
31 | 12, 30 | mpbird 249 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = (♯‘(𝑋(ClWWalksNOn‘𝐺)2))) |
32 | 7 | anim2i 607 | . . . 4 ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺))) |
33 | 32 | 3adant1 1110 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺))) |
34 | clwwlknon2num 27623 | . . 3 ⊢ ((𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | |
35 | 33, 34 | syl 17 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
36 | 31, 35 | eqtrd 2808 | 1 ⊢ ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘{𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 2 ∧ ((2nd ‘𝑤)‘0) = 𝑋)}) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 {crab 3086 ⊆ wss 3825 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 1st c1st 7492 2nd c2nd 7493 ≈ cen 8295 Fincfn 8298 0cc0 10327 ℕcn 11431 2c2 11488 ℕ0cn0 11700 ♯chash 13498 Vtxcvtx 26474 USPGraphcuspgr 26626 USGraphcusgr 26627 FinUSGraphcfusgr 26791 RegUSGraphcrusgr 27031 Walkscwlks 27071 ClWalkscclwlks 27249 ClWWalksNOncclwwlknon 27605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ifp 1044 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-er 8081 df-map 8200 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-dju 9116 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-n0 11701 df-xnn0 11773 df-z 11787 df-uz 12052 df-rp 12198 df-xadd 12318 df-fz 12702 df-fzo 12843 df-seq 13178 df-exp 13238 df-hash 13499 df-word 13663 df-lsw 13716 df-concat 13724 df-s1 13749 df-substr 13794 df-pfx 13843 df-edg 26526 df-uhgr 26536 df-ushgr 26537 df-upgr 26560 df-umgr 26561 df-uspgr 26628 df-usgr 26629 df-fusgr 26792 df-nbgr 26808 df-vtxdg 26941 df-rgr 27032 df-rusgr 27033 df-wlks 27074 df-clwlks 27250 df-wwlks 27306 df-wwlksn 27307 df-clwwlk 27478 df-clwwlkn 27530 df-clwwlknon 27606 |
This theorem is referenced by: numclwlk1lem1 27912 |
Copyright terms: Public domain | W3C validator |