MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppfnss Structured version   Visualization version   GIF version

Theorem suppfnss 8171
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 6-Jun-2022.)
Assertion
Ref Expression
suppfnss (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppfnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐴𝐵)
2 fndm 6624 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32ad2antrr 726 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 = 𝐴)
4 fndm 6624 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
54ad2antlr 727 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐺 = 𝐵)
61, 3, 53sstr4d 4005 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 ⊆ dom 𝐺)
76adantr 480 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺)
82eleq2d 2815 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
98ad2antrr 726 . . . . . . . . . . 11 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹𝑦𝐴))
10 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐺𝑥) = 𝑍 ↔ (𝐺𝑦) = 𝑍))
11 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑦) = 𝑍))
1210, 11imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) ↔ ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
1312rspcv 3587 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
149, 13biimtrdi 253 . . . . . . . . . 10 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1514com23 86 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1615imp31 417 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))
1716necon3d 2947 . . . . . . 7 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍))
1817ex 412 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝑦 ∈ dom 𝐹 → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍)))
1918com23 86 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹𝑦) ≠ 𝑍 → (𝑦 ∈ dom 𝐹 → (𝐺𝑦) ≠ 𝑍)))
20193imp 1110 . . . 4 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ (𝐹𝑦) ≠ 𝑍𝑦 ∈ dom 𝐹) → (𝐺𝑦) ≠ 𝑍)
217, 20rabssrabd 4049 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
22 fnfun 6621 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
2322ad2antrr 726 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐹)
24 simpl 482 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐹 Fn 𝐴)
25 ssexg 5281 . . . . . . . 8 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
26253adant3 1132 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐴 ∈ V)
27 fnex 7194 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐹 ∈ V)
2824, 26, 27syl2an 596 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐹 ∈ V)
29 simpr3 1197 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝑍𝑊)
30 suppval1 8148 . . . . . 6 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
3123, 28, 29, 30syl3anc 1373 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
32 fnfun 6621 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
3332ad2antlr 727 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐺)
34 simpr 484 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
35 simp2 1137 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐵𝑉)
36 fnex 7194 . . . . . . 7 ((𝐺 Fn 𝐵𝐵𝑉) → 𝐺 ∈ V)
3734, 35, 36syl2an 596 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐺 ∈ V)
38 suppval1 8148 . . . . . 6 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
3933, 37, 29, 38syl3anc 1373 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
4031, 39sseq12d 3983 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4140adantr 480 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4221, 41mpbird 257 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4342ex 412 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  wss 3917  dom cdm 5641  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  funsssuppss  8172  suppofss1d  8186  suppofss2d  8187  lincresunit2  48471
  Copyright terms: Public domain W3C validator