MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppfnss Structured version   Visualization version   GIF version

Theorem suppfnss 8203
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 6-Jun-2022.)
Assertion
Ref Expression
suppfnss (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem suppfnss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1191 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐴𝐵)
2 fndm 6663 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32ad2antrr 724 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 = 𝐴)
4 fndm 6663 . . . . . . 7 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
54ad2antlr 725 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐺 = 𝐵)
61, 3, 53sstr4d 4027 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → dom 𝐹 ⊆ dom 𝐺)
76adantr 479 . . . 4 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺)
82eleq2d 2812 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
98ad2antrr 724 . . . . . . . . . . 11 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹𝑦𝐴))
10 fveqeq2 6910 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐺𝑥) = 𝑍 ↔ (𝐺𝑦) = 𝑍))
11 fveqeq2 6910 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝑍 ↔ (𝐹𝑦) = 𝑍))
1210, 11imbi12d 343 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) ↔ ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
1312rspcv 3604 . . . . . . . . . . 11 (𝑦𝐴 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍)))
149, 13biimtrdi 252 . . . . . . . . . 10 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1514com23 86 . . . . . . . . 9 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))))
1615imp31 416 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺𝑦) = 𝑍 → (𝐹𝑦) = 𝑍))
1716necon3d 2951 . . . . . . 7 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍))
1817ex 411 . . . . . 6 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝑦 ∈ dom 𝐹 → ((𝐹𝑦) ≠ 𝑍 → (𝐺𝑦) ≠ 𝑍)))
1918com23 86 . . . . 5 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹𝑦) ≠ 𝑍 → (𝑦 ∈ dom 𝐹 → (𝐺𝑦) ≠ 𝑍)))
20193imp 1108 . . . 4 (((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) ∧ (𝐹𝑦) ≠ 𝑍𝑦 ∈ dom 𝐹) → (𝐺𝑦) ≠ 𝑍)
217, 20rabssrabd 4080 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
22 fnfun 6660 . . . . . . 7 (𝐹 Fn 𝐴 → Fun 𝐹)
2322ad2antrr 724 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐹)
24 simpl 481 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐹 Fn 𝐴)
25 ssexg 5328 . . . . . . . 8 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
26253adant3 1129 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐴 ∈ V)
27 fnex 7234 . . . . . . 7 ((𝐹 Fn 𝐴𝐴 ∈ V) → 𝐹 ∈ V)
2824, 26, 27syl2an 594 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐹 ∈ V)
29 simpr3 1193 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝑍𝑊)
30 suppval1 8180 . . . . . 6 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
3123, 28, 29, 30syl3anc 1368 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍})
32 fnfun 6660 . . . . . . 7 (𝐺 Fn 𝐵 → Fun 𝐺)
3332ad2antlr 725 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → Fun 𝐺)
34 simpr 483 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → 𝐺 Fn 𝐵)
35 simp2 1134 . . . . . . 7 ((𝐴𝐵𝐵𝑉𝑍𝑊) → 𝐵𝑉)
36 fnex 7234 . . . . . . 7 ((𝐺 Fn 𝐵𝐵𝑉) → 𝐺 ∈ V)
3734, 35, 36syl2an 594 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → 𝐺 ∈ V)
38 suppval1 8180 . . . . . 6 ((Fun 𝐺𝐺 ∈ V ∧ 𝑍𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
3933, 37, 29, 38syl3anc 1368 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍})
4031, 39sseq12d 4013 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4140adantr 479 . . 3 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺𝑦) ≠ 𝑍}))
4221, 41mpbird 256 . 2 ((((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) ∧ ∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))
4342ex 411 1 (((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ (𝐴𝐵𝐵𝑉𝑍𝑊)) → (∀𝑥𝐴 ((𝐺𝑥) = 𝑍 → (𝐹𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  {crab 3419  Vcvv 3462  wss 3947  dom cdm 5682  Fun wfun 6548   Fn wfn 6549  cfv 6554  (class class class)co 7424   supp csupp 8174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-supp 8175
This theorem is referenced by:  funsssuppss  8204  suppofss1d  8219  suppofss2d  8220  lincresunit2  47861
  Copyright terms: Public domain W3C validator