| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4051 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rab 3420 df-ss 3948 |
| This theorem is referenced by: rabssrabd 4063 sess1 5630 suppssov1 8204 suppssov2 8205 suppssfv 8209 cofon1 8692 naddssim 8705 harword 9585 scottex 9907 mrcss 17630 mndpsuppss 18747 ablfac1b 20058 mptscmfsupp0 20893 lspss 20950 dsmmacl 21715 dsmmsubg 21717 dsmmlss 21718 aspss 21851 psdmul 22118 scmatdmat 22469 clsss 23008 lfinpfin 23478 qustgpopn 24074 metss2lem 24468 equivcau 25270 rrxmvallem 25374 ovolsslem 25455 itg2monolem1 25721 lgamucov 27017 sqff1o 27161 musum 27170 madess 27851 cofcut1 27890 cusgrfilem1 29401 clwlknf1oclwwlknlem3 30030 occon 31234 spanss 31295 rmfsupp2 33181 fldgenss 33258 locfinreflem 33798 omsmon 34259 orvclteinc 34437 fin2solem 37572 poimirlem26 37612 poimirlem27 37613 cnambfre 37634 pclssN 39855 2polssN 39876 dihglblem3N 41256 dochss 41326 mapdordlem2 41598 nna4b4nsq 42633 itgoss 43138 nzss 44293 ovnsslelem 46532 gpgusgralem 47969 rmsuppss 48244 scmsuppss 48245 |
| Copyright terms: Public domain | W3C validator |