![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 4094 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: rabssrabd 4106 sess1 5665 suppssov1 8238 suppssov2 8239 suppssfv 8243 cofon1 8728 naddssim 8741 harword 9632 scottex 9954 mrcss 17674 ablfac1b 20114 mptscmfsupp0 20947 lspss 21005 dsmmacl 21784 dsmmsubg 21786 dsmmlss 21787 aspss 21920 psdmul 22193 scmatdmat 22542 clsss 23083 lfinpfin 23553 qustgpopn 24149 metss2lem 24545 equivcau 25353 rrxmvallem 25457 ovolsslem 25538 itg2monolem1 25805 lgamucov 27099 sqff1o 27243 musum 27252 madess 27933 cofcut1 27972 cusgrfilem1 29491 clwlknf1oclwwlknlem3 30115 occon 31319 spanss 31380 rmfsupp2 33218 fldgenss 33283 locfinreflem 33786 omsmon 34263 orvclteinc 34440 fin2solem 37566 poimirlem26 37606 poimirlem27 37607 cnambfre 37628 pclssN 39851 2polssN 39872 dihglblem3N 41252 dochss 41322 mapdordlem2 41594 nna4b4nsq 42615 itgoss 43120 nzss 44286 ovnsslelem 46481 rmsuppss 48095 mndpsuppss 48096 scmsuppss 48097 |
Copyright terms: Public domain | W3C validator |