![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3115 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 3827 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∀wral 3061 {crab 3065 ⊆ wss 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-in 3730 df-ss 3737 |
This theorem is referenced by: rabssrabd 3838 sess1 5218 suppfnssOLD 7475 suppssov1 7482 suppssfv 7486 harword 8629 mrcss 16483 ablfac1b 18676 mptscmfsupp0 19137 lspss 19196 aspss 19546 dsmmacl 20301 dsmmsubg 20303 dsmmlss 20304 scmatdmat 20538 clsss 21078 lfinpfin 21547 qustgpopn 22142 metss2lem 22535 equivcau 23316 rrxmvallem 23405 ovolsslem 23471 itg2monolem1 23736 lgamucov 24984 sqff1o 25128 musum 25137 cusgrfilem1 26585 clwlknf1oclwwlknlem3 27253 locfinreflem 30246 omsmon 30699 orvclteinc 30876 fin2solem 33727 poimirlem26 33767 poimirlem27 33768 cnambfre 33789 pclssN 35702 2polssN 35723 dihglblem3N 37105 dochss 37175 mapdordlem2 37447 nzss 39042 rmsuppss 42676 mndpsuppss 42677 scmsuppss 42678 |
Copyright terms: Public domain | W3C validator |