| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) Avoid axioms. (Revised by TM, 1-Feb-2026.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | 2 | ss2rabd 4021 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ral 3049 df-rab 3397 df-ss 3915 |
| This theorem is referenced by: ss2rabi 4025 rabssrabd 4032 sess1 5586 suppssov1 8135 suppssov2 8136 suppssfv 8140 cofon1 8595 naddssim 8608 harword 9458 scottex 9787 mrcss 17526 mndpsuppss 18677 ablfac1b 19988 mptscmfsupp0 20864 lspss 20921 dsmmacl 21682 dsmmsubg 21684 dsmmlss 21685 aspss 21818 psdmul 22084 scmatdmat 22433 clsss 22972 lfinpfin 23442 qustgpopn 24038 metss2lem 24429 equivcau 25230 rrxmvallem 25334 ovolsslem 25415 itg2monolem1 25681 lgamucov 26978 sqff1o 27122 musum 27131 madess 27824 cofcut1 27867 bdayon 28212 cusgrfilem1 29438 clwlknf1oclwwlknlem3 30067 occon 31271 spanss 31332 rmfsupp2 33214 fldgenss 33291 locfinreflem 33876 omsmon 34334 orvclteinc 34512 rankval4b 35134 fin2solem 37669 poimirlem26 37709 poimirlem27 37710 cnambfre 37731 pmaple 39883 pclssN 40016 2polssN 40037 dihglblem3N 41417 dochss 41487 mapdordlem2 41759 nna4b4nsq 42781 itgoss 43283 nzss 44437 ovnsslelem 46685 gpgusgralem 48183 rmsuppss 48497 scmsuppss 48498 |
| Copyright terms: Public domain | W3C validator |