![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 4066 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 {crab 3429 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rab 3430 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: rabssrabd 4079 sess1 5646 suppssov1 8203 suppssov2 8204 suppssfv 8208 cofon1 8693 naddssim 8706 harword 9587 scottex 9909 mrcss 17596 ablfac1b 20027 mptscmfsupp0 20810 lspss 20868 dsmmacl 21675 dsmmsubg 21677 dsmmlss 21678 aspss 21810 psdmul 22090 scmatdmat 22430 clsss 22971 lfinpfin 23441 qustgpopn 24037 metss2lem 24433 equivcau 25241 rrxmvallem 25345 ovolsslem 25426 itg2monolem1 25693 lgamucov 26983 sqff1o 27127 musum 27136 madess 27816 cofcut1 27853 cusgrfilem1 29282 clwlknf1oclwwlknlem3 29906 occon 31110 spanss 31171 rmfsupp2 32959 fldgenss 33016 locfinreflem 33441 omsmon 33918 orvclteinc 34095 fin2solem 37079 poimirlem26 37119 poimirlem27 37120 cnambfre 37141 pclssN 39367 2polssN 39388 dihglblem3N 40768 dochss 40838 mapdordlem2 41110 nna4b4nsq 42084 itgoss 42587 nzss 43754 ovnsslelem 45948 rmsuppss 47434 mndpsuppss 47435 scmsuppss 47436 |
Copyright terms: Public domain | W3C validator |