| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4037 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-ss 3934 |
| This theorem is referenced by: rabssrabd 4049 sess1 5606 suppssov1 8179 suppssov2 8180 suppssfv 8184 cofon1 8639 naddssim 8652 harword 9523 scottex 9845 mrcss 17584 mndpsuppss 18699 ablfac1b 20009 mptscmfsupp0 20840 lspss 20897 dsmmacl 21657 dsmmsubg 21659 dsmmlss 21660 aspss 21793 psdmul 22060 scmatdmat 22409 clsss 22948 lfinpfin 23418 qustgpopn 24014 metss2lem 24406 equivcau 25207 rrxmvallem 25311 ovolsslem 25392 itg2monolem1 25658 lgamucov 26955 sqff1o 27099 musum 27108 madess 27795 cofcut1 27835 bdayon 28180 cusgrfilem1 29390 clwlknf1oclwwlknlem3 30019 occon 31223 spanss 31284 rmfsupp2 33196 fldgenss 33273 locfinreflem 33837 omsmon 34296 orvclteinc 34474 fin2solem 37607 poimirlem26 37647 poimirlem27 37648 cnambfre 37669 pclssN 39895 2polssN 39916 dihglblem3N 41296 dochss 41366 mapdordlem2 41638 nna4b4nsq 42655 itgoss 43159 nzss 44313 ovnsslelem 46565 gpgusgralem 48051 rmsuppss 48362 scmsuppss 48363 |
| Copyright terms: Public domain | W3C validator |