| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4021 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-ss 3919 |
| This theorem is referenced by: rabssrabd 4033 sess1 5581 suppssov1 8127 suppssov2 8128 suppssfv 8132 cofon1 8587 naddssim 8600 harword 9449 scottex 9778 mrcss 17522 mndpsuppss 18673 ablfac1b 19985 mptscmfsupp0 20861 lspss 20918 dsmmacl 21679 dsmmsubg 21681 dsmmlss 21682 aspss 21815 psdmul 22082 scmatdmat 22431 clsss 22970 lfinpfin 23440 qustgpopn 24036 metss2lem 24427 equivcau 25228 rrxmvallem 25332 ovolsslem 25413 itg2monolem1 25679 lgamucov 26976 sqff1o 27120 musum 27129 madess 27822 cofcut1 27865 bdayon 28210 cusgrfilem1 29435 clwlknf1oclwwlknlem3 30061 occon 31265 spanss 31326 rmfsupp2 33203 fldgenss 33280 locfinreflem 33851 omsmon 34309 orvclteinc 34487 rankval4b 35109 fin2solem 37652 poimirlem26 37692 poimirlem27 37693 cnambfre 37714 pclssN 39939 2polssN 39960 dihglblem3N 41340 dochss 41410 mapdordlem2 41682 nna4b4nsq 42699 itgoss 43202 nzss 44356 ovnsslelem 46604 gpgusgralem 48093 rmsuppss 48407 scmsuppss 48408 |
| Copyright terms: Public domain | W3C validator |