| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4046 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: rabssrabd 4058 sess1 5619 suppssov1 8196 suppssov2 8197 suppssfv 8201 cofon1 8684 naddssim 8697 harword 9577 scottex 9899 mrcss 17628 mndpsuppss 18743 ablfac1b 20053 mptscmfsupp0 20884 lspss 20941 dsmmacl 21701 dsmmsubg 21703 dsmmlss 21704 aspss 21837 psdmul 22104 scmatdmat 22453 clsss 22992 lfinpfin 23462 qustgpopn 24058 metss2lem 24450 equivcau 25252 rrxmvallem 25356 ovolsslem 25437 itg2monolem1 25703 lgamucov 27000 sqff1o 27144 musum 27153 madess 27840 cofcut1 27880 bdayon 28225 cusgrfilem1 29435 clwlknf1oclwwlknlem3 30064 occon 31268 spanss 31329 rmfsupp2 33233 fldgenss 33310 locfinreflem 33871 omsmon 34330 orvclteinc 34508 fin2solem 37630 poimirlem26 37670 poimirlem27 37671 cnambfre 37692 pclssN 39913 2polssN 39934 dihglblem3N 41314 dochss 41384 mapdordlem2 41656 nna4b4nsq 42683 itgoss 43187 nzss 44341 ovnsslelem 46589 gpgusgralem 48060 rmsuppss 48345 scmsuppss 48346 |
| Copyright terms: Public domain | W3C validator |