| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4024 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3397 df-ss 3922 |
| This theorem is referenced by: rabssrabd 4036 sess1 5588 suppssov1 8137 suppssov2 8138 suppssfv 8142 cofon1 8597 naddssim 8610 harword 9474 scottex 9800 mrcss 17540 mndpsuppss 18657 ablfac1b 19969 mptscmfsupp0 20848 lspss 20905 dsmmacl 21666 dsmmsubg 21668 dsmmlss 21669 aspss 21802 psdmul 22069 scmatdmat 22418 clsss 22957 lfinpfin 23427 qustgpopn 24023 metss2lem 24415 equivcau 25216 rrxmvallem 25320 ovolsslem 25401 itg2monolem1 25667 lgamucov 26964 sqff1o 27108 musum 27117 madess 27808 cofcut1 27851 bdayon 28196 cusgrfilem1 29419 clwlknf1oclwwlknlem3 30045 occon 31249 spanss 31310 rmfsupp2 33191 fldgenss 33268 locfinreflem 33809 omsmon 34268 orvclteinc 34446 fin2solem 37588 poimirlem26 37628 poimirlem27 37629 cnambfre 37650 pclssN 39876 2polssN 39897 dihglblem3N 41277 dochss 41347 mapdordlem2 41619 nna4b4nsq 42636 itgoss 43139 nzss 44293 ovnsslelem 46545 gpgusgralem 48044 rmsuppss 48358 scmsuppss 48359 |
| Copyright terms: Public domain | W3C validator |