Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 4000 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rabssrabd 4012 sess1 5548 suppssov1 7985 suppssfv 7989 harword 9252 mrcss 17242 ablfac1b 19588 mptscmfsupp0 20103 lspss 20161 dsmmacl 20858 dsmmsubg 20860 dsmmlss 20861 aspss 20991 scmatdmat 21572 clsss 22113 lfinpfin 22583 qustgpopn 23179 metss2lem 23573 equivcau 24369 rrxmvallem 24473 ovolsslem 24553 itg2monolem1 24820 lgamucov 26092 sqff1o 26236 musum 26245 cusgrfilem1 27725 clwlknf1oclwwlknlem3 28348 rmfsupp2 31394 locfinreflem 31692 omsmon 32165 orvclteinc 32342 naddssim 33764 madess 33986 cofcut1 34017 fin2solem 35690 poimirlem26 35730 poimirlem27 35731 cnambfre 35752 pclssN 37835 2polssN 37856 dihglblem3N 39236 dochss 39306 mapdordlem2 39578 nna4b4nsq 40413 nzss 41824 rmsuppss 45594 mndpsuppss 45595 scmsuppss 45596 |
Copyright terms: Public domain | W3C validator |