| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
| Ref | Expression |
|---|---|
| ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 3 | ss2rab 4034 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-ss 3931 |
| This theorem is referenced by: rabssrabd 4046 sess1 5603 suppssov1 8176 suppssov2 8177 suppssfv 8181 cofon1 8636 naddssim 8649 harword 9516 scottex 9838 mrcss 17577 mndpsuppss 18692 ablfac1b 20002 mptscmfsupp0 20833 lspss 20890 dsmmacl 21650 dsmmsubg 21652 dsmmlss 21653 aspss 21786 psdmul 22053 scmatdmat 22402 clsss 22941 lfinpfin 23411 qustgpopn 24007 metss2lem 24399 equivcau 25200 rrxmvallem 25304 ovolsslem 25385 itg2monolem1 25651 lgamucov 26948 sqff1o 27092 musum 27101 madess 27788 cofcut1 27828 bdayon 28173 cusgrfilem1 29383 clwlknf1oclwwlknlem3 30012 occon 31216 spanss 31277 rmfsupp2 33189 fldgenss 33266 locfinreflem 33830 omsmon 34289 orvclteinc 34467 fin2solem 37600 poimirlem26 37640 poimirlem27 37641 cnambfre 37662 pclssN 39888 2polssN 39909 dihglblem3N 41289 dochss 41359 mapdordlem2 41631 nna4b4nsq 42648 itgoss 43152 nzss 44306 ovnsslelem 46558 gpgusgralem 48047 rmsuppss 48358 scmsuppss 48359 |
| Copyright terms: Public domain | W3C validator |