Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ss2rabdv | Structured version Visualization version GIF version |
Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
Ref | Expression |
---|---|
ss2rabdv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2rabdv | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2rabdv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
3 | ss2rab 4004 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: rabssrabd 4016 sess1 5557 suppssov1 8014 suppssfv 8018 harword 9322 mrcss 17325 ablfac1b 19673 mptscmfsupp0 20188 lspss 20246 dsmmacl 20948 dsmmsubg 20950 dsmmlss 20951 aspss 21081 scmatdmat 21664 clsss 22205 lfinpfin 22675 qustgpopn 23271 metss2lem 23667 equivcau 24464 rrxmvallem 24568 ovolsslem 24648 itg2monolem1 24915 lgamucov 26187 sqff1o 26331 musum 26340 cusgrfilem1 27822 clwlknf1oclwwlknlem3 28447 rmfsupp2 31492 locfinreflem 31790 omsmon 32265 orvclteinc 32442 naddssim 33837 madess 34059 cofcut1 34090 fin2solem 35763 poimirlem26 35803 poimirlem27 35804 cnambfre 35825 pclssN 37908 2polssN 37929 dihglblem3N 39309 dochss 39379 mapdordlem2 39651 nna4b4nsq 40497 nzss 41935 rmsuppss 45706 mndpsuppss 45707 scmsuppss 45708 |
Copyright terms: Public domain | W3C validator |