MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 30351
Description: Lemma 2 for numclwlk1 30352 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 30342, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋   𝑤,𝐶   𝑤,𝐹

Proof of Theorem numclwlk1lem2
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 29544 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
2 usgruspgr 29159 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
43ad2antlr 727 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USPGraph)
5 simpl 482 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋𝑉)
65adantl 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 12905 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
87ad2antll 729 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
9 numclwlk1.v . . . . 5 𝑉 = (Vtx‘𝐺)
10 numclwlk1.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
11 eqid 2735 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
129, 10, 11dlwwlknondlwlknonen 30347 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
134, 6, 8, 12syl3anc 1373 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
141anim2i 617 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1514ancomd 461 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
169isfusgr 29297 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1715, 16sylibr 234 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
18 eluzge3nn 12906 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1918nnnn0d 12562 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ0)
2019adantl 481 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ0)
21 wlksnfi 29889 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
2217, 20, 21syl2an 596 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
23 clwlkswks 29758 . . . . . . . 8 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2423a1i 11 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
25 simp21 1207 . . . . . . 7 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 𝑁)
2624, 25rabssrabd 4058 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁})
2722, 26ssfid 9273 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ∈ Fin)
2810, 27eqeltrid 2838 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ∈ Fin)
299clwwlknonfin 30075 . . . . . 6 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
3029ad2antrr 726 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
31 ssrab2 4055 . . . . . 6 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁)
3231a1i 11 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁))
3330, 32ssfid 9273 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
34 hashen 14365 . . . 4 ((𝐶 ∈ Fin ∧ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3528, 33, 34syl2anc 584 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3613, 35mpbird 257 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
37 eqidd 2736 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}))
38 oveq12 7414 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
39 fvoveq1 7428 . . . . . . . 8 (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
4039adantl 481 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
41 simpl 482 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → 𝑣 = 𝑋)
4240, 41eqeq12d 2751 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) = 𝑣 ↔ (𝑤‘(𝑁 − 2)) = 𝑋))
4338, 42rabeqbidv 3434 . . . . 5 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4443adantl 481 . . . 4 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ (𝑣 = 𝑋𝑛 = 𝑁)) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
45 ovex 7438 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V
4645rabex 5309 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V
4746a1i 11 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V)
4837, 44, 6, 8, 47ovmpod 7559 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4948fveq2d 6880 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
50 eqid 2735 . . . 4 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
51 eqid 2735 . . . 4 (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
529, 50, 51numclwwlk1 30342 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
53 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
545, 9eleqtrdi 2844 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋 ∈ (Vtx‘𝐺))
5554adantl 481 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 ∈ (Vtx‘𝐺))
56 uz3m2nn 12907 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
5756ad2antll 729 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
58 clwwlknonclwlknonen 30344 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
594, 55, 57, 58syl3anc 1373 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
6053, 59eqbrtrid 5154 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
61 uznn0sub 12891 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
627, 61syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ0)
6362adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ0)
64 wlksnfi 29889 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ (𝑁 − 2) ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
6517, 63, 64syl2an 596 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
66 simp2l 1200 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = (𝑁 − 2))
6724, 66rabssrabd 4058 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)})
6865, 67ssfid 9273 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
6953, 68eqeltrid 2838 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ∈ Fin)
709clwwlknonfin 30075 . . . . . . . 8 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
7170ad2antrr 726 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
72 hashen 14365 . . . . . . 7 ((𝐹 ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7369, 71, 72syl2anc 584 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7460, 73mpbird 257 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7574eqcomd 2741 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) = (♯‘𝐹))
7675oveq2d 7421 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))) = (𝐾 · (♯‘𝐹)))
7752, 76eqtrd 2770 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘𝐹)))
7836, 49, 773eqtr2d 2776 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  cen 8956  Fincfn 8959  0cc0 11129   · cmul 11134  cmin 11466  cn 12240  2c2 12295  3c3 12296  0cn0 12501  cuz 12852  chash 14348  Vtxcvtx 28975  USPGraphcuspgr 29127  USGraphcusgr 29128  FinUSGraphcfusgr 29295   RegUSGraph crusgr 29536  Walkscwlks 29576  ClWalkscclwlks 29752  ClWWalksNOncclwwlknon 30068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-s2 14867  df-vtx 28977  df-iedg 28978  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-fusgr 29296  df-nbgr 29312  df-vtxdg 29446  df-rgr 29537  df-rusgr 29538  df-wlks 29579  df-clwlks 29753  df-wwlks 29812  df-wwlksn 29813  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069
This theorem is referenced by:  numclwlk1  30352
  Copyright terms: Public domain W3C validator