MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 29603
Description: Lemma 2 for numclwlk1 29604 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 29594, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtxβ€˜πΊ)
numclwlk1.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑁   𝑀,𝑉   𝑀,𝑋   𝑀,𝐢   𝑀,𝐹

Proof of Theorem numclwlk1lem2
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 28801 . . . . . 6 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
2 usgruspgr 28418 . . . . . 6 (𝐺 ∈ USGraph β†’ 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USPGraph)
43ad2antlr 726 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ USPGraph)
5 simpl 484 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑋 ∈ 𝑉)
65adantl 483 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
7 uzuzle23 12869 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
87ad2antll 728 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
9 numclwlk1.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
10 numclwlk1.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
11 eqid 2733 . . . . 5 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
129, 10, 11dlwwlknondlwlknonen 29599 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
134, 6, 8, 12syl3anc 1372 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
141anim2i 618 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1514ancomd 463 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
169isfusgr 28555 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1715, 16sylibr 233 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 ∈ FinUSGraph)
18 eluzge3nn 12870 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•)
1918nnnn0d 12528 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•0)
2019adantl 483 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ β„•0)
21 wlksnfi 29141 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„•0) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∈ Fin)
2217, 20, 21syl2an 597 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∈ Fin)
23 clwlkswks 29013 . . . . . . . 8 (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ)
2423a1i 11 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ))
25 simp21 1207 . . . . . . 7 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋) ∧ 𝑀 ∈ (ClWalksβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π‘€)) = 𝑁)
2624, 25rabssrabd 4080 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} βŠ† {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁})
2722, 26ssfid 9263 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} ∈ Fin)
2810, 27eqeltrid 2838 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐢 ∈ Fin)
299clwwlknonfin 29327 . . . . . 6 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ Fin)
3029ad2antrr 725 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ Fin)
31 ssrab2 4076 . . . . . 6 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} βŠ† (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)
3231a1i 11 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} βŠ† (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
3330, 32ssfid 9263 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ Fin)
34 hashen 14303 . . . 4 ((𝐢 ∈ Fin ∧ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ Fin) β†’ ((β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) ↔ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
3528, 33, 34syl2anc 585 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) ↔ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
3613, 35mpbird 257 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
37 eqidd 2734 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}))
38 oveq12 7413 . . . . . 6 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
39 fvoveq1 7427 . . . . . . . 8 (𝑛 = 𝑁 β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
4039adantl 483 . . . . . . 7 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
41 simpl 484 . . . . . . 7 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ 𝑣 = 𝑋)
4240, 41eqeq12d 2749 . . . . . 6 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ ((π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣 ↔ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
4338, 42rabeqbidv 3450 . . . . 5 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
4443adantl 483 . . . 4 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ (𝑣 = 𝑋 ∧ 𝑛 = 𝑁)) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
45 ovex 7437 . . . . . 6 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
4645rabex 5331 . . . . 5 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ V
4746a1i 11 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ V)
4837, 44, 6, 8, 47ovmpod 7555 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
4948fveq2d 6892 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
50 eqid 2733 . . . 4 (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
51 eqid 2733 . . . 4 (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
529, 50, 51numclwwlk1 29594 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
53 numclwlk1.f . . . . . . 7 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
545, 9eleqtrdi 2844 . . . . . . . . 9 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
5554adantl 483 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
56 uz3m2nn 12871 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
5756ad2antll 728 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 2) ∈ β„•)
58 clwwlknonclwlknonen 29596 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ (𝑁 βˆ’ 2) ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
594, 55, 57, 58syl3anc 1372 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
6053, 59eqbrtrid 5182 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
61 uznn0sub 12857 . . . . . . . . . . . 12 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
627, 61syl 17 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
6362adantl 483 . . . . . . . . . 10 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
64 wlksnfi 29141 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ (𝑁 βˆ’ 2) ∈ β„•0) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)} ∈ Fin)
6517, 63, 64syl2an 597 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)} ∈ Fin)
66 simp2l 1200 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ 𝑀 ∈ (ClWalksβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2))
6724, 66rabssrabd 4080 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} βŠ† {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)})
6865, 67ssfid 9263 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ Fin)
6953, 68eqeltrid 2838 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐹 ∈ Fin)
709clwwlknonfin 29327 . . . . . . . 8 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
7170ad2antrr 725 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
72 hashen 14303 . . . . . . 7 ((𝐹 ∈ Fin ∧ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin) β†’ ((β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ↔ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7369, 71, 72syl2anc 585 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ↔ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7460, 73mpbird 257 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7574eqcomd 2739 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) = (β™―β€˜πΉ))
7675oveq2d 7420 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) = (𝐾 Β· (β™―β€˜πΉ)))
7752, 76eqtrd 2773 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜πΉ)))
7836, 49, 773eqtr2d 2779 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7404   ∈ cmpo 7406  1st c1st 7968  2nd c2nd 7969   β‰ˆ cen 8932  Fincfn 8935  0cc0 11106   Β· cmul 11111   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  3c3 12264  β„•0cn0 12468  β„€β‰₯cuz 12818  β™―chash 14286  Vtxcvtx 28236  USPGraphcuspgr 28388  USGraphcusgr 28389  FinUSGraphcfusgr 28553   RegUSGraph crusgr 28793  Walkscwlks 28833  ClWalkscclwlks 29007  ClWWalksNOncclwwlknon 29320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-s2 14795  df-vtx 28238  df-iedg 28239  df-edg 28288  df-uhgr 28298  df-ushgr 28299  df-upgr 28322  df-umgr 28323  df-uspgr 28390  df-usgr 28391  df-fusgr 28554  df-nbgr 28570  df-vtxdg 28703  df-rgr 28794  df-rusgr 28795  df-wlks 28836  df-clwlks 29008  df-wwlks 29064  df-wwlksn 29065  df-clwwlk 29215  df-clwwlkn 29258  df-clwwlknon 29321
This theorem is referenced by:  numclwlk1  29604
  Copyright terms: Public domain W3C validator