MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 30092
Description: Lemma 2 for numclwlk1 30093 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 30083, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtxβ€˜πΊ)
numclwlk1.c 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑁   𝑀,𝑉   𝑀,𝑋   𝑀,𝐢   𝑀,𝐹

Proof of Theorem numclwlk1lem2
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 29290 . . . . . 6 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
2 usgruspgr 28907 . . . . . 6 (𝐺 ∈ USGraph β†’ 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USPGraph)
43ad2antlr 724 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐺 ∈ USPGraph)
5 simpl 482 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑋 ∈ 𝑉)
65adantl 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ 𝑉)
7 uzuzle23 12870 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
87ad2antll 726 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑁 ∈ (β„€β‰₯β€˜2))
9 numclwlk1.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
10 numclwlk1.c . . . . 5 𝐢 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)}
11 eqid 2724 . . . . 5 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}
129, 10, 11dlwwlknondlwlknonen 30088 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
134, 6, 8, 12syl3anc 1368 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
141anim2i 616 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1514ancomd 461 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
169isfusgr 29044 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1715, 16sylibr 233 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) β†’ 𝐺 ∈ FinUSGraph)
18 eluzge3nn 12871 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•)
1918nnnn0d 12529 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•0)
2019adantl 481 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ β„•0)
21 wlksnfi 29630 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ β„•0) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∈ Fin)
2217, 20, 21syl2an 595 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁} ∈ Fin)
23 clwlkswks 29502 . . . . . . . 8 (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ)
2423a1i 11 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (ClWalksβ€˜πΊ) βŠ† (Walksβ€˜πΊ))
25 simp21 1203 . . . . . . 7 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋) ∧ 𝑀 ∈ (ClWalksβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π‘€)) = 𝑁)
2624, 25rabssrabd 4073 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} βŠ† {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = 𝑁})
2722, 26ssfid 9263 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 𝑁 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋 ∧ ((2nd β€˜π‘€)β€˜(𝑁 βˆ’ 2)) = 𝑋)} ∈ Fin)
2810, 27eqeltrid 2829 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐢 ∈ Fin)
299clwwlknonfin 29816 . . . . . 6 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ Fin)
3029ad2antrr 723 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ Fin)
31 ssrab2 4069 . . . . . 6 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} βŠ† (𝑋(ClWWalksNOnβ€˜πΊ)𝑁)
3231a1i 11 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} βŠ† (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
3330, 32ssfid 9263 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ Fin)
34 hashen 14304 . . . 4 ((𝐢 ∈ Fin ∧ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ Fin) β†’ ((β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) ↔ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
3528, 33, 34syl2anc 583 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}) ↔ 𝐢 β‰ˆ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
3613, 35mpbird 257 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
37 eqidd 2725 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}))
38 oveq12 7410 . . . . . 6 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
39 fvoveq1 7424 . . . . . . . 8 (𝑛 = 𝑁 β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
4039adantl 481 . . . . . . 7 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
41 simpl 482 . . . . . . 7 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ 𝑣 = 𝑋)
4240, 41eqeq12d 2740 . . . . . 6 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ ((π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣 ↔ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋))
4338, 42rabeqbidv 3441 . . . . 5 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
4443adantl 481 . . . 4 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ (𝑣 = 𝑋 ∧ 𝑛 = 𝑁)) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
45 ovex 7434 . . . . . 6 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
4645rabex 5322 . . . . 5 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ V
4746a1i 11 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋} ∈ V)
4837, 44, 6, 8, 47ovmpod 7552 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋})
4948fveq2d 6885 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (β™―β€˜{𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) = 𝑋}))
50 eqid 2724 . . . 4 (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣}) = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})
51 eqid 2724 . . . 4 (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) = (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))
529, 50, 51numclwwlk1 30083 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))))
53 numclwlk1.f . . . . . . 7 𝐹 = {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)}
545, 9eleqtrdi 2835 . . . . . . . . 9 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
5554adantl 481 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝑋 ∈ (Vtxβ€˜πΊ))
56 uz3m2nn 12872 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
5756ad2antll 726 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑁 βˆ’ 2) ∈ β„•)
58 clwwlknonclwlknonen 30085 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtxβ€˜πΊ) ∧ (𝑁 βˆ’ 2) ∈ β„•) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
594, 55, 57, 58syl3anc 1368 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
6053, 59eqbrtrid 5173 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))
61 uznn0sub 12858 . . . . . . . . . . . 12 (𝑁 ∈ (β„€β‰₯β€˜2) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
627, 61syl 17 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
6362adantl 481 . . . . . . . . . 10 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) ∈ β„•0)
64 wlksnfi 29630 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ (𝑁 βˆ’ 2) ∈ β„•0) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)} ∈ Fin)
6517, 63, 64syl2an 595 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)} ∈ Fin)
66 simp2l 1196 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) ∧ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ∧ 𝑀 ∈ (ClWalksβ€˜πΊ)) β†’ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2))
6724, 66rabssrabd 4073 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} βŠ† {𝑀 ∈ (Walksβ€˜πΊ) ∣ (β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2)})
6865, 67ssfid 9263 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = (𝑁 βˆ’ 2) ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} ∈ Fin)
6953, 68eqeltrid 2829 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ 𝐹 ∈ Fin)
709clwwlknonfin 29816 . . . . . . . 8 (𝑉 ∈ Fin β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
7170ad2antrr 723 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin)
72 hashen 14304 . . . . . . 7 ((𝐹 ∈ Fin ∧ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ∈ Fin) β†’ ((β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ↔ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7369, 71, 72syl2anc 583 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ ((β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) ↔ 𝐹 β‰ˆ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7460, 73mpbird 257 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΉ) = (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))))
7574eqcomd 2730 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) = (β™―β€˜πΉ))
7675oveq2d 7417 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (𝐾 Β· (β™―β€˜(𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)))) = (𝐾 Β· (β™―β€˜πΉ)))
7752, 76eqtrd 2764 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜(𝑋(𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) = 𝑣})𝑁)) = (𝐾 Β· (β™―β€˜πΉ)))
7836, 49, 773eqtr2d 2770 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3))) β†’ (β™―β€˜πΆ) = (𝐾 Β· (β™―β€˜πΉ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {crab 3424  Vcvv 3466   βŠ† wss 3940   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967   β‰ˆ cen 8932  Fincfn 8935  0cc0 11106   Β· cmul 11111   βˆ’ cmin 11441  β„•cn 12209  2c2 12264  3c3 12265  β„•0cn0 12469  β„€β‰₯cuz 12819  β™―chash 14287  Vtxcvtx 28725  USPGraphcuspgr 28877  USGraphcusgr 28878  FinUSGraphcfusgr 29042   RegUSGraph crusgr 29282  Walkscwlks 29322  ClWalkscclwlks 29496  ClWWalksNOncclwwlknon 29809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-rp 12972  df-xadd 13090  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-word 14462  df-lsw 14510  df-concat 14518  df-s1 14543  df-substr 14588  df-pfx 14618  df-s2 14796  df-vtx 28727  df-iedg 28728  df-edg 28777  df-uhgr 28787  df-ushgr 28788  df-upgr 28811  df-umgr 28812  df-uspgr 28879  df-usgr 28880  df-fusgr 29043  df-nbgr 29059  df-vtxdg 29192  df-rgr 29283  df-rusgr 29284  df-wlks 29325  df-clwlks 29497  df-wwlks 29553  df-wwlksn 29554  df-clwwlk 29704  df-clwwlkn 29747  df-clwwlknon 29810
This theorem is referenced by:  numclwlk1  30093
  Copyright terms: Public domain W3C validator