MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 30345
Description: Lemma 2 for numclwlk1 30346 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 30336, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋   𝑤,𝐶   𝑤,𝐹

Proof of Theorem numclwlk1lem2
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 29541 . . . . . 6 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
2 usgruspgr 29156 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USPGraph)
43ad2antlr 727 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USPGraph)
5 simpl 482 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋𝑉)
65adantl 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 12779 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
87ad2antll 729 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
9 numclwlk1.v . . . . 5 𝑉 = (Vtx‘𝐺)
10 numclwlk1.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
11 eqid 2731 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
129, 10, 11dlwwlknondlwlknonen 30341 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
134, 6, 8, 12syl3anc 1373 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
141anim2i 617 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1514ancomd 461 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
169isfusgr 29294 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1715, 16sylibr 234 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph)
18 eluz3nn 12784 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1918nnnn0d 12439 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ0)
2019adantl 481 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ0)
21 wlksnfi 29883 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
2217, 20, 21syl2an 596 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
23 clwlkswks 29752 . . . . . . . 8 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2423a1i 11 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
25 simp21 1207 . . . . . . 7 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 𝑁)
2624, 25rabssrabd 4033 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁})
2722, 26ssfid 9153 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ∈ Fin)
2810, 27eqeltrid 2835 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ∈ Fin)
299clwwlknonfin 30069 . . . . . 6 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
3029ad2antrr 726 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
31 ssrab2 4030 . . . . . 6 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁)
3231a1i 11 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁))
3330, 32ssfid 9153 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
34 hashen 14251 . . . 4 ((𝐶 ∈ Fin ∧ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3528, 33, 34syl2anc 584 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3613, 35mpbird 257 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
37 eqidd 2732 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}))
38 oveq12 7355 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
39 fvoveq1 7369 . . . . . . . 8 (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
4039adantl 481 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
41 simpl 482 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → 𝑣 = 𝑋)
4240, 41eqeq12d 2747 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) = 𝑣 ↔ (𝑤‘(𝑁 − 2)) = 𝑋))
4338, 42rabeqbidv 3413 . . . . 5 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4443adantl 481 . . . 4 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ (𝑣 = 𝑋𝑛 = 𝑁)) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
45 ovex 7379 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V
4645rabex 5277 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V
4746a1i 11 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V)
4837, 44, 6, 8, 47ovmpod 7498 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4948fveq2d 6826 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
50 eqid 2731 . . . 4 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
51 eqid 2731 . . . 4 (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
529, 50, 51numclwwlk1 30336 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
53 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
545, 9eleqtrdi 2841 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋 ∈ (Vtx‘𝐺))
5554adantl 481 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 ∈ (Vtx‘𝐺))
56 uz3m2nn 12789 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
5756ad2antll 729 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
58 clwwlknonclwlknonen 30338 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
594, 55, 57, 58syl3anc 1373 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
6053, 59eqbrtrid 5126 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
61 uznn0sub 12768 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
627, 61syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ0)
6362adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ0)
64 wlksnfi 29883 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ (𝑁 − 2) ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
6517, 63, 64syl2an 596 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
66 simp2l 1200 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = (𝑁 − 2))
6724, 66rabssrabd 4033 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)})
6865, 67ssfid 9153 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
6953, 68eqeltrid 2835 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ∈ Fin)
709clwwlknonfin 30069 . . . . . . . 8 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
7170ad2antrr 726 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
72 hashen 14251 . . . . . . 7 ((𝐹 ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7369, 71, 72syl2anc 584 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7460, 73mpbird 257 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7574eqcomd 2737 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) = (♯‘𝐹))
7675oveq2d 7362 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))) = (𝐾 · (♯‘𝐹)))
7752, 76eqtrd 2766 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘𝐹)))
7836, 49, 773eqtr2d 2772 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  cen 8866  Fincfn 8869  0cc0 11003   · cmul 11008  cmin 11341  cn 12122  2c2 12177  3c3 12178  0cn0 12378  cuz 12729  chash 14234  Vtxcvtx 28972  USPGraphcuspgr 29124  USGraphcusgr 29125  FinUSGraphcfusgr 29292   RegUSGraph crusgr 29533  Walkscwlks 29573  ClWalkscclwlks 29746  ClWWalksNOncclwwlknon 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-xadd 13009  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-s2 14752  df-vtx 28974  df-iedg 28975  df-edg 29024  df-uhgr 29034  df-ushgr 29035  df-upgr 29058  df-umgr 29059  df-uspgr 29126  df-usgr 29127  df-fusgr 29293  df-nbgr 29309  df-vtxdg 29443  df-rgr 29534  df-rusgr 29535  df-wlks 29576  df-clwlks 29747  df-wwlks 29806  df-wwlksn 29807  df-clwwlk 29957  df-clwwlkn 30000  df-clwwlknon 30063
This theorem is referenced by:  numclwlk1  30346
  Copyright terms: Public domain W3C validator