MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1lem2 Structured version   Visualization version   GIF version

Theorem numclwlk1lem2 27815
Description: Lemma 2 for numclwlk1 27816 (Statement 9 in [Huneke] p. 2 for n>2). This theorem corresponds to numclwwlk1 27801, using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1lem2 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋   𝑤,𝐶   𝑤,𝐹

Proof of Theorem numclwlk1lem2
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrusgr 26929 . . . . . 6 (𝐺RegUSGraph𝐾𝐺 ∈ USGraph)
2 usgruspgr 26544 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
31, 2syl 17 . . . . 5 (𝐺RegUSGraph𝐾𝐺 ∈ USPGraph)
43ad2antlr 717 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USPGraph)
5 simpl 476 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋𝑉)
65adantl 475 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
7 uzuzle23 12040 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ (ℤ‘2))
87ad2antll 719 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘2))
9 numclwlk1.v . . . . 5 𝑉 = (Vtx‘𝐺)
10 numclwlk1.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
11 eqid 2778 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}
129, 10, 11dlwwlknondlwlknonen 27810 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘2)) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
134, 6, 8, 12syl3anc 1439 . . 3 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
141anim2i 610 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph))
1514ancomd 455 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
169isfusgr 26682 . . . . . . . 8 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1715, 16sylibr 226 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → 𝐺 ∈ FinUSGraph)
18 eluzge3nn 12041 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1918nnnn0d 11707 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ0)
2019adantl 475 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ0)
21 wlksnfi 27297 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
2217, 20, 21syl2an 589 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁} ∈ Fin)
23 clwlkswks 27145 . . . . . . . 8 (ClWalks‘𝐺) ⊆ (Walks‘𝐺)
2423a1i 11 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (ClWalks‘𝐺) ⊆ (Walks‘𝐺))
25 simp21 1220 . . . . . . 7 ((((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = 𝑁)
2624, 25rabssrabd 3910 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = 𝑁})
2722, 26ssfid 8473 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)} ∈ Fin)
2810, 27syl5eqel 2863 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐶 ∈ Fin)
299clwwlknonfin 27513 . . . . . 6 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
3029ad2antrr 716 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ Fin)
31 ssrab2 3908 . . . . . 6 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁)
3231a1i 11 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ⊆ (𝑋(ClWWalksNOn‘𝐺)𝑁))
3330, 32ssfid 8473 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin)
34 hashen 13458 . . . 4 ((𝐶 ∈ Fin ∧ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ Fin) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3528, 33, 34syl2anc 579 . . 3 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}) ↔ 𝐶 ≈ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
3613, 35mpbird 249 . 2 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
37 eqidd 2779 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}))
38 oveq12 6933 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
39 fvoveq1 6947 . . . . . . . 8 (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
4039adantl 475 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
41 simpl 476 . . . . . . 7 ((𝑣 = 𝑋𝑛 = 𝑁) → 𝑣 = 𝑋)
4240, 41eqeq12d 2793 . . . . . 6 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) = 𝑣 ↔ (𝑤‘(𝑁 − 2)) = 𝑋))
4338, 42rabeqbidv 3392 . . . . 5 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4443adantl 475 . . . 4 ((((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ (𝑣 = 𝑋𝑛 = 𝑁)) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
45 ovex 6956 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V
4645rabex 5051 . . . . 5 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V
4746a1i 11 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋} ∈ V)
4837, 44, 6, 8, 47ovmpt2d 7067 . . 3 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋})
4948fveq2d 6452 . 2 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (♯‘{𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) = 𝑋}))
50 eqid 2778 . . . 4 (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})
51 eqid 2778 . . . 4 (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))
529, 50, 51numclwwlk1 27801 . . 3 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))))
53 numclwlk1.f . . . . . . 7 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
545, 9syl6eleq 2869 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑋 ∈ (Vtx‘𝐺))
5554adantl 475 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋 ∈ (Vtx‘𝐺))
56 uz3m2nn 12042 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
5756ad2antll 719 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
58 clwwlknonclwlknonen 27804 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑋 ∈ (Vtx‘𝐺) ∧ (𝑁 − 2) ∈ ℕ) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
594, 55, 57, 58syl3anc 1439 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
6053, 59syl5eqbr 4923 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))
61 uznn0sub 12030 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
627, 61syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ0)
6362adantl 475 . . . . . . . . . 10 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ0)
64 wlksnfi 27297 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ (𝑁 − 2) ∈ ℕ0) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
6517, 63, 64syl2an 589 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)} ∈ Fin)
66 simp2l 1213 . . . . . . . . . 10 ((((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) ∧ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋) ∧ 𝑤 ∈ (ClWalks‘𝐺)) → (♯‘(1st𝑤)) = (𝑁 − 2))
6724, 66rabssrabd 3910 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ⊆ {𝑤 ∈ (Walks‘𝐺) ∣ (♯‘(1st𝑤)) = (𝑁 − 2)})
6865, 67ssfid 8473 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)} ∈ Fin)
6953, 68syl5eqel 2863 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐹 ∈ Fin)
709clwwlknonfin 27513 . . . . . . . 8 (𝑉 ∈ Fin → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
7170ad2antrr 716 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin)
72 hashen 13458 . . . . . . 7 ((𝐹 ∈ Fin ∧ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ∈ Fin) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7369, 71, 72syl2anc 579 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) ↔ 𝐹 ≈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7460, 73mpbird 249 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐹) = (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))))
7574eqcomd 2784 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) = (♯‘𝐹))
7675oveq2d 6940 . . 3 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐾 · (♯‘(𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)))) = (𝐾 · (♯‘𝐹)))
7752, 76eqtrd 2814 . 2 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘(𝑋(𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣})𝑁)) = (𝐾 · (♯‘𝐹)))
7836, 49, 773eqtr2d 2820 1 (((𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  wss 3792   class class class wbr 4888  cfv 6137  (class class class)co 6924  cmpt2 6926  1st c1st 7445  2nd c2nd 7446  cen 8240  Fincfn 8243  0cc0 10274   · cmul 10279  cmin 10608  cn 11379  2c2 11435  3c3 11436  0cn0 11647  cuz 11997  chash 13441  Vtxcvtx 26361  USPGraphcuspgr 26514  USGraphcusgr 26515  FinUSGraphcfusgr 26680  RegUSGraphcrusgr 26921  Walkscwlks 26961  ClWalkscclwlks 27139  ClWWalksNOncclwwlknon 27506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ifp 1047  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-n0 11648  df-xnn0 11720  df-z 11734  df-uz 11998  df-rp 12143  df-xadd 12263  df-fz 12649  df-fzo 12790  df-seq 13125  df-exp 13184  df-hash 13442  df-word 13606  df-lsw 13659  df-concat 13667  df-s1 13692  df-substr 13737  df-pfx 13786  df-s2 14005  df-vtx 26363  df-iedg 26364  df-edg 26413  df-uhgr 26423  df-ushgr 26424  df-upgr 26447  df-umgr 26448  df-uspgr 26516  df-usgr 26517  df-fusgr 26681  df-nbgr 26697  df-vtxdg 26831  df-rgr 26922  df-rusgr 26923  df-wlks 26964  df-clwlks 27140  df-wwlks 27196  df-wwlksn 27197  df-clwwlk 27379  df-clwwlkn 27431  df-clwwlknon 27507
This theorem is referenced by:  numclwlk1  27816
  Copyright terms: Public domain W3C validator