| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptexgf | Structured version Visualization version GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| mptexgf.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| mptexgf | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6554 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | dmmpt 6213 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 4 | tru 1544 | . . . . . . 7 ⊢ ⊤ | |
| 5 | 4 | 2a1i 12 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ V → ⊤)) |
| 6 | 5 | ss2rabi 4040 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
| 7 | mptexgf.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 8 | 7 | rabtru 3656 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| 9 | 6, 8 | sseqtri 3995 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
| 10 | 3, 9 | eqsstri 3993 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 11 | ssexg 5278 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 10, 11 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 13 | funex 7193 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 14 | 1, 12, 13 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 ∈ wcel 2109 Ⅎwnfc 2876 {crab 3405 Vcvv 3447 ⊆ wss 3914 ↦ cmpt 5188 dom cdm 5638 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: esumrnmpt2 34058 exrecfnlem 37367 mptexf 45231 |
| Copyright terms: Public domain | W3C validator |