| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptexgf | Structured version Visualization version GIF version | ||
| Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
| Ref | Expression |
|---|---|
| mptexgf.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| mptexgf | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6579 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | 2 | dmmpt 6234 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 4 | tru 1544 | . . . . . . 7 ⊢ ⊤ | |
| 5 | 4 | 2a1i 12 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ V → ⊤)) |
| 6 | 5 | ss2rabi 4057 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
| 7 | mptexgf.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 8 | 7 | rabtru 3673 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
| 9 | 6, 8 | sseqtri 4012 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
| 10 | 3, 9 | eqsstri 4010 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 11 | ssexg 5298 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 10, 11 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 13 | funex 7216 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 14 | 1, 12, 13 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊤wtru 1541 ∈ wcel 2109 Ⅎwnfc 2884 {crab 3420 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 dom cdm 5659 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: esumrnmpt2 34104 exrecfnlem 37402 mptexf 45228 |
| Copyright terms: Public domain | W3C validator |