Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptexgf | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
Ref | Expression |
---|---|
mptexgf.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptexgf | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6479 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2739 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | dmmpt 6148 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
4 | trud 1549 | . . . . . . 7 ⊢ (𝐵 ∈ V → ⊤) | |
5 | 4 | rgenw 3077 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ∈ V → ⊤) |
6 | ss2rab 4005 | . . . . . 6 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} ↔ ∀𝑥 ∈ 𝐴 (𝐵 ∈ V → ⊤)) | |
7 | 5, 6 | mpbir 230 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
8 | mptexgf.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
9 | 8 | rabtru 3622 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
10 | 7, 9 | sseqtri 3958 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
11 | 3, 10 | eqsstri 3956 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
12 | ssexg 5248 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
13 | 11, 12 | mpan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
14 | funex 7104 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
15 | 1, 13, 14 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1540 ∈ wcel 2107 Ⅎwnfc 2888 ∀wral 3065 {crab 3069 Vcvv 3433 ⊆ wss 3888 ↦ cmpt 5158 dom cdm 5590 Fun wfun 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 |
This theorem is referenced by: esumrnmpt2 32045 exrecfnlem 35559 mptexf 42788 |
Copyright terms: Public domain | W3C validator |