![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptexgf | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
Ref | Expression |
---|---|
mptexgf.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptexgf | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6606 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | dmmpt 6262 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
4 | tru 1541 | . . . . . . 7 ⊢ ⊤ | |
5 | 4 | 2a1i 12 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ V → ⊤)) |
6 | 5 | ss2rabi 4087 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | mptexgf.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
8 | 7 | rabtru 3692 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
9 | 6, 8 | sseqtri 4032 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
10 | 3, 9 | eqsstri 4030 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
11 | ssexg 5329 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
13 | funex 7239 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
14 | 1, 12, 13 | sylancr 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1538 ∈ wcel 2106 Ⅎwnfc 2888 {crab 3433 Vcvv 3478 ⊆ wss 3963 ↦ cmpt 5231 dom cdm 5689 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: esumrnmpt2 34049 exrecfnlem 37362 mptexf 45181 |
Copyright terms: Public domain | W3C validator |