MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexgf Structured version   Visualization version   GIF version

Theorem mptexgf 7259
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypothesis
Ref Expression
mptexgf.a 𝑥𝐴
Assertion
Ref Expression
mptexgf (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)

Proof of Theorem mptexgf
StepHypRef Expression
1 funmpt 6616 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2740 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmpt 6271 . . . 4 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
4 tru 1541 . . . . . . 7
542a1i 12 . . . . . 6 (𝑥𝐴 → (𝐵 ∈ V → ⊤))
65ss2rabi 4100 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤}
7 mptexgf.a . . . . . 6 𝑥𝐴
87rabtru 3705 . . . . 5 {𝑥𝐴 ∣ ⊤} = 𝐴
96, 8sseqtri 4045 . . . 4 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
103, 9eqsstri 4043 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
11 ssexg 5341 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
1210, 11mpan 689 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
13 funex 7256 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
141, 12, 13sylancr 586 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1538  wcel 2108  wnfc 2893  {crab 3443  Vcvv 3488  wss 3976  cmpt 5249  dom cdm 5700  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  esumrnmpt2  34032  exrecfnlem  37345  mptexf  45145
  Copyright terms: Public domain W3C validator