MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexgf Structured version   Visualization version   GIF version

Theorem mptexgf 7080
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypothesis
Ref Expression
mptexgf.a 𝑥𝐴
Assertion
Ref Expression
mptexgf (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)

Proof of Theorem mptexgf
StepHypRef Expression
1 funmpt 6456 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2738 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmpt 6132 . . . 4 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
4 trud 1549 . . . . . . 7 (𝐵 ∈ V → ⊤)
54rgenw 3075 . . . . . 6 𝑥𝐴 (𝐵 ∈ V → ⊤)
6 ss2rab 4000 . . . . . 6 ({𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤} ↔ ∀𝑥𝐴 (𝐵 ∈ V → ⊤))
75, 6mpbir 230 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤}
8 mptexgf.a . . . . . 6 𝑥𝐴
98rabtru 3614 . . . . 5 {𝑥𝐴 ∣ ⊤} = 𝐴
107, 9sseqtri 3953 . . . 4 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
113, 10eqsstri 3951 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
12 ssexg 5242 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
1311, 12mpan 686 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
14 funex 7077 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
151, 13, 14sylancr 586 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1540  wcel 2108  wnfc 2886  wral 3063  {crab 3067  Vcvv 3422  wss 3883  cmpt 5153  dom cdm 5580  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  esumrnmpt2  31936  exrecfnlem  35477  mptexf  42670
  Copyright terms: Public domain W3C validator