![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptexgf | Structured version Visualization version GIF version |
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.) |
Ref | Expression |
---|---|
mptexgf.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptexgf | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6589 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | eqid 2726 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | dmmpt 6243 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
4 | tru 1538 | . . . . . . 7 ⊢ ⊤ | |
5 | 4 | 2a1i 12 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ∈ V → ⊤)) |
6 | 5 | ss2rabi 4070 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ {𝑥 ∈ 𝐴 ∣ ⊤} |
7 | mptexgf.a | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
8 | 7 | rabtru 3677 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 |
9 | 6, 8 | sseqtri 4015 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
10 | 3, 9 | eqsstri 4013 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
11 | ssexg 5320 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 688 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
13 | funex 7228 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
14 | 1, 12, 13 | sylancr 585 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊤wtru 1535 ∈ wcel 2099 Ⅎwnfc 2876 {crab 3419 Vcvv 3462 ⊆ wss 3946 ↦ cmpt 5228 dom cdm 5674 Fun wfun 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 |
This theorem is referenced by: esumrnmpt2 33914 exrecfnlem 37099 mptexf 44881 |
Copyright terms: Public domain | W3C validator |