MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexgf Structured version   Visualization version   GIF version

Theorem mptexgf 7158
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) (Revised by Thierry Arnoux, 17-May-2020.)
Hypothesis
Ref Expression
mptexgf.a 𝑥𝐴
Assertion
Ref Expression
mptexgf (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)

Proof of Theorem mptexgf
StepHypRef Expression
1 funmpt 6520 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2729 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmpt 6189 . . . 4 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
4 tru 1544 . . . . . . 7
542a1i 12 . . . . . 6 (𝑥𝐴 → (𝐵 ∈ V → ⊤))
65ss2rabi 4028 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ {𝑥𝐴 ∣ ⊤}
7 mptexgf.a . . . . . 6 𝑥𝐴
87rabtru 3645 . . . . 5 {𝑥𝐴 ∣ ⊤} = 𝐴
96, 8sseqtri 3984 . . . 4 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
103, 9eqsstri 3982 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
11 ssexg 5262 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
1210, 11mpan 690 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
13 funex 7155 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
141, 12, 13sylancr 587 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wtru 1541  wcel 2109  wnfc 2876  {crab 3394  Vcvv 3436  wss 3903  cmpt 5173  dom cdm 5619  Fun wfun 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  esumrnmpt2  34035  exrecfnlem  37353  mptexf  45215
  Copyright terms: Public domain W3C validator