MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14b Structured version   Visualization version   GIF version

Theorem dff14b 7269
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14b (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14b
StepHypRef Expression
1 dff14a 7268 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
2 necom 2986 . . . . . . 7 (𝑥𝑦𝑦𝑥)
32imbi1i 349 . . . . . 6 ((𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
43ralbii 3083 . . . . 5 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
5 raldifsnb 4777 . . . . 5 (∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
64, 5bitri 275 . . . 4 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
76ralbii 3083 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
87anbi2i 623 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
91, 8bitri 275 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wne 2933  wral 3052  cdif 3928  {csn 4606  wf 6532  1-1wf1 6533  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544
This theorem is referenced by:  f12dfv  7271  f13dfv  7272
  Copyright terms: Public domain W3C validator