MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14b Structured version   Visualization version   GIF version

Theorem dff14b 7144
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14b (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14b
StepHypRef Expression
1 dff14a 7143 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
2 necom 2997 . . . . . . 7 (𝑥𝑦𝑦𝑥)
32imbi1i 350 . . . . . 6 ((𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
43ralbii 3092 . . . . 5 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
5 raldifsnb 4729 . . . . 5 (∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
64, 5bitri 274 . . . 4 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
76ralbii 3092 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
87anbi2i 623 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
91, 8bitri 274 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wne 2943  wral 3064  cdif 3884  {csn 4561  wf 6429  1-1wf1 6430  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by:  f12dfv  7145  f13dfv  7146
  Copyright terms: Public domain W3C validator