Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dff14b | Structured version Visualization version GIF version |
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
dff14b | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff14a 7124 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) | |
2 | necom 2996 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ 𝑦 ≠ 𝑥) | |
3 | 2 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
4 | 3 | ralbii 3090 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
5 | raldifsnb 4726 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
7 | 6 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
8 | 7 | anbi2i 622 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
9 | 1, 8 | bitri 274 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ≠ wne 2942 ∀wral 3063 ∖ cdif 3880 {csn 4558 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fv 6426 |
This theorem is referenced by: f12dfv 7126 f13dfv 7127 |
Copyright terms: Public domain | W3C validator |