| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14b | Structured version Visualization version GIF version | ||
| Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| Ref | Expression |
|---|---|
| dff14b | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff14a 7262 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) | |
| 2 | necom 2985 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ 𝑦 ≠ 𝑥) | |
| 3 | 2 | imbi1i 349 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 4 | 3 | ralbii 3082 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 5 | raldifsnb 4772 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (𝑦 ≠ 𝑥 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 7 | 6 | ralbii 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ≠ wne 2932 ∀wral 3051 ∖ cdif 3923 {csn 4601 ⟶wf 6526 –1-1→wf1 6527 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fv 6538 |
| This theorem is referenced by: f12dfv 7265 f13dfv 7266 |
| Copyright terms: Public domain | W3C validator |