Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfilb Structured version   Visualization version   GIF version

Theorem safesnsupfilb 43408
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfilb.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfilb.finite (𝜑𝐵 ∈ Fin)
safesnsupfilb.subset (𝜑𝐵𝐴)
safesnsupfilb.ordered (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
safesnsupfilb (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑂,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem safesnsupfilb
StepHypRef Expression
1 safesnsupfilb.ordered . . . . . . 7 (𝜑𝑅 Or 𝐴)
21ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝑅 Or 𝐴)
3 safesnsupfilb.subset . . . . . . 7 (𝜑𝐵𝐴)
43ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝐵𝐴)
5 safesnsupfilb.finite . . . . . . 7 (𝜑𝐵 ∈ Fin)
65ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ Fin)
7 simpr 484 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
8 eqidd 2730 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → sup(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅))
92, 4, 6, 7, 8supgtoreq 9349 . . . . 5 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → (𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)))
10 df-or 848 . . . . . 6 ((𝑥 = sup(𝐵, 𝐴, 𝑅) ∨ 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ (¬ 𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
11 orcom 870 . . . . . 6 ((𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)) ↔ (𝑥 = sup(𝐵, 𝐴, 𝑅) ∨ 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
12 df-ne 2926 . . . . . . 7 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) ↔ ¬ 𝑥 = sup(𝐵, 𝐴, 𝑅))
1312imbi1i 349 . . . . . 6 ((𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ (¬ 𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
1410, 11, 133bitr4i 303 . . . . 5 ((𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)) ↔ (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
159, 14sylib 218 . . . 4 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
1615ralrimiva 3121 . . 3 ((𝜑𝑂𝐵) → ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
17 iftrue 4478 . . . . . . 7 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
1817difeq2d 4073 . . . . . 6 (𝑂𝐵 → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)}))
1918adantl 481 . . . . 5 ((𝜑𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)}))
2019raleqdv 3289 . . . 4 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦))
21 simpr 484 . . . . . . . . 9 ((𝜑𝑂𝐵) → 𝑂𝐵)
2221iftrued 4480 . . . . . . . 8 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
2322raleqdv 3289 . . . . . . 7 ((𝜑𝑂𝐵) → (∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦))
245adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ∈ Fin)
25 safesnsupfilb.small . . . . . . . . . . . . 13 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
2625adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂𝐵) → (𝑂 = ∅ ∨ 𝑂 = 1o))
27 0elon 6356 . . . . . . . . . . . . . 14 ∅ ∈ On
28 eleq1 2816 . . . . . . . . . . . . . 14 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2927, 28mpbiri 258 . . . . . . . . . . . . 13 (𝑂 = ∅ → 𝑂 ∈ On)
30 1on 8391 . . . . . . . . . . . . . 14 1o ∈ On
31 eleq1 2816 . . . . . . . . . . . . . 14 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
3230, 31mpbiri 258 . . . . . . . . . . . . 13 (𝑂 = 1o𝑂 ∈ On)
3329, 32jaoi 857 . . . . . . . . . . . 12 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
3426, 33syl 17 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂 ∈ On)
3521, 34sdomne0d 43404 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ≠ ∅)
363adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵𝐴)
3724, 35, 363jca 1128 . . . . . . . . 9 ((𝜑𝑂𝐵) → (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴))
38 fisupcl 9348 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
391, 37, 38syl2an2r 685 . . . . . . . 8 ((𝜑𝑂𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
40 breq2 5092 . . . . . . . . 9 (𝑦 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4140ralsng 4625 . . . . . . . 8 (sup(𝐵, 𝐴, 𝑅) ∈ 𝐵 → (∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4239, 41syl 17 . . . . . . 7 ((𝜑𝑂𝐵) → (∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4323, 42bitrd 279 . . . . . 6 ((𝜑𝑂𝐵) → (∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4443ralbidv 3152 . . . . 5 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
45 raldifsnb 4745 . . . . 5 (∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})𝑥𝑅sup(𝐵, 𝐴, 𝑅))
4644, 45bitr4di 289 . . . 4 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅))))
4720, 46bitrd 279 . . 3 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅))))
4816, 47mpbird 257 . 2 ((𝜑𝑂𝐵) → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
49 ral0 4460 . . 3 𝑥 ∈ ∅ ∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦
50 iffalse 4481 . . . . . . 7 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
5150adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
5251difeq2d 4073 . . . . 5 ((𝜑 ∧ ¬ 𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵𝐵))
53 difid 4323 . . . . 5 (𝐵𝐵) = ∅
5452, 53eqtrdi 2780 . . . 4 ((𝜑 ∧ ¬ 𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = ∅)
5554raleqdv 3289 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦))
5649, 55mpbiri 258 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
5748, 56pm2.61dan 812 1 (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3896  wss 3899  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5088   Or wor 5520  Oncon0 6301  1oc1o 8372  csdm 8862  Fincfn 8863  supcsup 9318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5089  df-opab 5151  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7297  df-om 7791  df-1o 8379  df-er 8616  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-sup 9320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator