Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfilb Structured version   Visualization version   GIF version

Theorem safesnsupfilb 43516
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfilb.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfilb.finite (𝜑𝐵 ∈ Fin)
safesnsupfilb.subset (𝜑𝐵𝐴)
safesnsupfilb.ordered (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
safesnsupfilb (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑂,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem safesnsupfilb
StepHypRef Expression
1 safesnsupfilb.ordered . . . . . . 7 (𝜑𝑅 Or 𝐴)
21ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝑅 Or 𝐴)
3 safesnsupfilb.subset . . . . . . 7 (𝜑𝐵𝐴)
43ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝐵𝐴)
5 safesnsupfilb.finite . . . . . . 7 (𝜑𝐵 ∈ Fin)
65ad2antrr 726 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ Fin)
7 simpr 484 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
8 eqidd 2732 . . . . . 6 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → sup(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅))
92, 4, 6, 7, 8supgtoreq 9361 . . . . 5 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → (𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)))
10 df-or 848 . . . . . 6 ((𝑥 = sup(𝐵, 𝐴, 𝑅) ∨ 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ (¬ 𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
11 orcom 870 . . . . . 6 ((𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)) ↔ (𝑥 = sup(𝐵, 𝐴, 𝑅) ∨ 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
12 df-ne 2929 . . . . . . 7 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) ↔ ¬ 𝑥 = sup(𝐵, 𝐴, 𝑅))
1312imbi1i 349 . . . . . 6 ((𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ (¬ 𝑥 = sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
1410, 11, 133bitr4i 303 . . . . 5 ((𝑥𝑅sup(𝐵, 𝐴, 𝑅) ∨ 𝑥 = sup(𝐵, 𝐴, 𝑅)) ↔ (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
159, 14sylib 218 . . . 4 (((𝜑𝑂𝐵) ∧ 𝑥𝐵) → (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
1615ralrimiva 3124 . . 3 ((𝜑𝑂𝐵) → ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
17 iftrue 4480 . . . . . . 7 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
1817difeq2d 4075 . . . . . 6 (𝑂𝐵 → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)}))
1918adantl 481 . . . . 5 ((𝜑𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)}))
2019raleqdv 3292 . . . 4 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦))
21 simpr 484 . . . . . . . . 9 ((𝜑𝑂𝐵) → 𝑂𝐵)
2221iftrued 4482 . . . . . . . 8 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
2322raleqdv 3292 . . . . . . 7 ((𝜑𝑂𝐵) → (∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦))
245adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ∈ Fin)
25 safesnsupfilb.small . . . . . . . . . . . . 13 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
2625adantr 480 . . . . . . . . . . . 12 ((𝜑𝑂𝐵) → (𝑂 = ∅ ∨ 𝑂 = 1o))
27 0elon 6367 . . . . . . . . . . . . . 14 ∅ ∈ On
28 eleq1 2819 . . . . . . . . . . . . . 14 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2927, 28mpbiri 258 . . . . . . . . . . . . 13 (𝑂 = ∅ → 𝑂 ∈ On)
30 1on 8403 . . . . . . . . . . . . . 14 1o ∈ On
31 eleq1 2819 . . . . . . . . . . . . . 14 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
3230, 31mpbiri 258 . . . . . . . . . . . . 13 (𝑂 = 1o𝑂 ∈ On)
3329, 32jaoi 857 . . . . . . . . . . . 12 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
3426, 33syl 17 . . . . . . . . . . 11 ((𝜑𝑂𝐵) → 𝑂 ∈ On)
3521, 34sdomne0d 43512 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵 ≠ ∅)
363adantr 480 . . . . . . . . . 10 ((𝜑𝑂𝐵) → 𝐵𝐴)
3724, 35, 363jca 1128 . . . . . . . . 9 ((𝜑𝑂𝐵) → (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴))
38 fisupcl 9360 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
391, 37, 38syl2an2r 685 . . . . . . . 8 ((𝜑𝑂𝐵) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵)
40 breq2 5097 . . . . . . . . 9 (𝑦 = sup(𝐵, 𝐴, 𝑅) → (𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4140ralsng 4627 . . . . . . . 8 (sup(𝐵, 𝐴, 𝑅) ∈ 𝐵 → (∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4239, 41syl 17 . . . . . . 7 ((𝜑𝑂𝐵) → (∀𝑦 ∈ {sup(𝐵, 𝐴, 𝑅)}𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4323, 42bitrd 279 . . . . . 6 ((𝜑𝑂𝐵) → (∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
4443ralbidv 3155 . . . . 5 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})𝑥𝑅sup(𝐵, 𝐴, 𝑅)))
45 raldifsnb 4747 . . . . 5 (∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅)) ↔ ∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})𝑥𝑅sup(𝐵, 𝐴, 𝑅))
4644, 45bitr4di 289 . . . 4 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ {sup(𝐵, 𝐴, 𝑅)})∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅))))
4720, 46bitrd 279 . . 3 ((𝜑𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥𝐵 (𝑥 ≠ sup(𝐵, 𝐴, 𝑅) → 𝑥𝑅sup(𝐵, 𝐴, 𝑅))))
4816, 47mpbird 257 . 2 ((𝜑𝑂𝐵) → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
49 ral0 4462 . . 3 𝑥 ∈ ∅ ∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦
50 iffalse 4483 . . . . . . 7 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
5150adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
5251difeq2d 4075 . . . . 5 ((𝜑 ∧ ¬ 𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = (𝐵𝐵))
53 difid 4325 . . . . 5 (𝐵𝐵) = ∅
5452, 53eqtrdi 2782 . . . 4 ((𝜑 ∧ ¬ 𝑂𝐵) → (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)) = ∅)
5554raleqdv 3292 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → (∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦 ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦))
5649, 55mpbiri 258 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
5748, 56pm2.61dan 812 1 (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  wss 3897  c0 4282  ifcif 4474  {csn 4575   class class class wbr 5093   Or wor 5526  Oncon0 6312  1oc1o 8384  csdm 8874  Fincfn 8875  supcsup 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-om 7803  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator