| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goaln0 | Structured version Visualization version GIF version | ||
| Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
| Ref | Expression |
|---|---|
| goaln0 | ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-goal 35322 | . . . 4 ⊢ ∀𝑔𝑖𝐴 = 〈2o, 〈𝑖, 𝐴〉〉 | |
| 2 | 2on0 8425 | . . . . . . . . . . . 12 ⊢ 2o ≠ ∅ | |
| 3 | 2 | neii 2927 | . . . . . . . . . . 11 ⊢ ¬ 2o = ∅ |
| 4 | 3 | intnanr 487 | . . . . . . . . . 10 ⊢ ¬ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉) |
| 5 | 2oex 8422 | . . . . . . . . . . 11 ⊢ 2o ∈ V | |
| 6 | opex 5419 | . . . . . . . . . . 11 ⊢ 〈𝑖, 𝐴〉 ∈ V | |
| 7 | 5, 6 | opth 5431 | . . . . . . . . . 10 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 ↔ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉)) |
| 8 | 4, 7 | mtbir 323 | . . . . . . . . 9 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 |
| 9 | goel 35327 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘∈𝑔𝑗) = 〈∅, 〈𝑘, 𝑗〉〉) | |
| 10 | 9 | eqeq2d 2740 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉)) |
| 11 | 8, 10 | mtbiri 327 | . . . . . . . 8 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
| 12 | 11 | rgen2 3175 | . . . . . . 7 ⊢ ∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
| 13 | ralnex2 3113 | . . . . . . 7 ⊢ (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) | |
| 14 | 12, 13 | mpbi 230 | . . . . . 6 ⊢ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
| 15 | 14 | intnan 486 | . . . . 5 ⊢ ¬ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
| 16 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) | |
| 17 | 16 | 2rexbidv 3200 | . . . . . 6 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
| 18 | fmla0 35362 | . . . . . 6 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗)} | |
| 19 | 17, 18 | elrab2 3659 | . . . . 5 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) ↔ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
| 20 | 15, 19 | mtbir 323 | . . . 4 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) |
| 21 | 1, 20 | eqneltri 2847 | . . 3 ⊢ ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅) |
| 22 | fveq2 6840 | . . . 4 ⊢ (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅)) | |
| 23 | 22 | eleq2d 2814 | . . 3 ⊢ (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅))) |
| 24 | 21, 23 | mtbiri 327 | . 2 ⊢ (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁)) |
| 25 | 24 | necon2ai 2954 | 1 ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∅c0 4292 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ωcom 7822 2oc2o 8405 ∈𝑔cgoe 35313 ∀𝑔cgol 35315 Fmlacfmla 35317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-map 8778 df-goel 35320 df-goal 35322 df-sat 35323 df-fmla 35325 |
| This theorem is referenced by: goalr 35377 |
| Copyright terms: Public domain | W3C validator |