| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > goaln0 | Structured version Visualization version GIF version | ||
| Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
| Ref | Expression |
|---|---|
| goaln0 | ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-goal 35329 | . . . 4 ⊢ ∀𝑔𝑖𝐴 = 〈2o, 〈𝑖, 𝐴〉〉 | |
| 2 | 2on0 8448 | . . . . . . . . . . . 12 ⊢ 2o ≠ ∅ | |
| 3 | 2 | neii 2927 | . . . . . . . . . . 11 ⊢ ¬ 2o = ∅ |
| 4 | 3 | intnanr 487 | . . . . . . . . . 10 ⊢ ¬ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉) |
| 5 | 2oex 8445 | . . . . . . . . . . 11 ⊢ 2o ∈ V | |
| 6 | opex 5424 | . . . . . . . . . . 11 ⊢ 〈𝑖, 𝐴〉 ∈ V | |
| 7 | 5, 6 | opth 5436 | . . . . . . . . . 10 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 ↔ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉)) |
| 8 | 4, 7 | mtbir 323 | . . . . . . . . 9 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 |
| 9 | goel 35334 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘∈𝑔𝑗) = 〈∅, 〈𝑘, 𝑗〉〉) | |
| 10 | 9 | eqeq2d 2740 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉)) |
| 11 | 8, 10 | mtbiri 327 | . . . . . . . 8 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
| 12 | 11 | rgen2 3177 | . . . . . . 7 ⊢ ∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
| 13 | ralnex2 3113 | . . . . . . 7 ⊢ (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) | |
| 14 | 12, 13 | mpbi 230 | . . . . . 6 ⊢ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
| 15 | 14 | intnan 486 | . . . . 5 ⊢ ¬ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
| 16 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) | |
| 17 | 16 | 2rexbidv 3202 | . . . . . 6 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
| 18 | fmla0 35369 | . . . . . 6 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗)} | |
| 19 | 17, 18 | elrab2 3662 | . . . . 5 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) ↔ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
| 20 | 15, 19 | mtbir 323 | . . . 4 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) |
| 21 | 1, 20 | eqneltri 2847 | . . 3 ⊢ ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅) |
| 22 | fveq2 6858 | . . . 4 ⊢ (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅)) | |
| 23 | 22 | eleq2d 2814 | . . 3 ⊢ (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅))) |
| 24 | 21, 23 | mtbiri 327 | . 2 ⊢ (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁)) |
| 25 | 24 | necon2ai 2954 | 1 ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∅c0 4296 〈cop 4595 ‘cfv 6511 (class class class)co 7387 ωcom 7842 2oc2o 8428 ∈𝑔cgoe 35320 ∀𝑔cgol 35322 Fmlacfmla 35324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-map 8801 df-goel 35327 df-goal 35329 df-sat 35330 df-fmla 35332 |
| This theorem is referenced by: goalr 35384 |
| Copyright terms: Public domain | W3C validator |