Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaln0 Structured version   Visualization version   GIF version

Theorem goaln0 32753
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goaln0 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Distinct variable group:   𝐴,𝑖
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem goaln0
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-goal 32702 . . . 4 𝑔𝑖𝐴 = ⟨2o, ⟨𝑖, 𝐴⟩⟩
2 2on0 8096 . . . . . . . . . . . 12 2o ≠ ∅
32neii 2989 . . . . . . . . . . 11 ¬ 2o = ∅
43intnanr 491 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩)
5 2oex 8095 . . . . . . . . . . 11 2o ∈ V
6 opex 5321 . . . . . . . . . . 11 𝑖, 𝐴⟩ ∈ V
75, 6opth 5333 . . . . . . . . . 10 (⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩))
84, 7mtbir 326 . . . . . . . . 9 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩
9 goel 32707 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
109eqeq2d 2809 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
118, 10mtbiri 330 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1211rgen2 3168 . . . . . . 7 𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
13 ralnex2 3221 . . . . . . 7 (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1412, 13mpbi 233 . . . . . 6 ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
1514intnan 490 . . . . 5 ¬ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
16 eqeq1 2802 . . . . . . 7 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (𝑥 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
17162rexbidv 3259 . . . . . 6 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
18 fmla0 32742 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
1917, 18elrab2 3631 . . . . 5 (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅) ↔ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
2015, 19mtbir 326 . . . 4 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅)
211, 20eqneltri 2883 . . 3 ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)
22 fveq2 6645 . . . 4 (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅))
2322eleq2d 2875 . . 3 (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)))
2421, 23mtbiri 330 . 2 (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁))
2524necon2ai 3016 1 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  c0 4243  cop 4531  cfv 6324  (class class class)co 7135  ωcom 7560  2oc2o 8079  𝑔cgoe 32693  𝑔cgol 32695  Fmlacfmla 32697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-map 8391  df-goel 32700  df-goal 32702  df-sat 32703  df-fmla 32705
This theorem is referenced by:  goalr  32757
  Copyright terms: Public domain W3C validator