Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaln0 Structured version   Visualization version   GIF version

Theorem goaln0 33334
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goaln0 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Distinct variable group:   𝐴,𝑖
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem goaln0
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-goal 33283 . . . 4 𝑔𝑖𝐴 = ⟨2o, ⟨𝑖, 𝐴⟩⟩
2 2on0 8290 . . . . . . . . . . . 12 2o ≠ ∅
32neii 2946 . . . . . . . . . . 11 ¬ 2o = ∅
43intnanr 487 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩)
5 2oex 8298 . . . . . . . . . . 11 2o ∈ V
6 opex 5381 . . . . . . . . . . 11 𝑖, 𝐴⟩ ∈ V
75, 6opth 5393 . . . . . . . . . 10 (⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩))
84, 7mtbir 322 . . . . . . . . 9 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩
9 goel 33288 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
109eqeq2d 2750 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
118, 10mtbiri 326 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1211rgen2 3128 . . . . . . 7 𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
13 ralnex2 3190 . . . . . . 7 (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1412, 13mpbi 229 . . . . . 6 ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
1514intnan 486 . . . . 5 ¬ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
16 eqeq1 2743 . . . . . . 7 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (𝑥 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
17162rexbidv 3230 . . . . . 6 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
18 fmla0 33323 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
1917, 18elrab2 3628 . . . . 5 (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅) ↔ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
2015, 19mtbir 322 . . . 4 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅)
211, 20eqneltri 2833 . . 3 ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)
22 fveq2 6768 . . . 4 (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅))
2322eleq2d 2825 . . 3 (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)))
2421, 23mtbiri 326 . 2 (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁))
2524necon2ai 2974 1 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  Vcvv 3430  c0 4261  cop 4572  cfv 6430  (class class class)co 7268  ωcom 7700  2oc2o 8275  𝑔cgoe 33274  𝑔cgol 33276  Fmlacfmla 33278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-map 8591  df-goel 33281  df-goal 33283  df-sat 33284  df-fmla 33286
This theorem is referenced by:  goalr  33338
  Copyright terms: Public domain W3C validator