![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goaln0 | Structured version Visualization version GIF version |
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
Ref | Expression |
---|---|
goaln0 | ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-goal 35310 | . . . 4 ⊢ ∀𝑔𝑖𝐴 = 〈2o, 〈𝑖, 𝐴〉〉 | |
2 | 2on0 8538 | . . . . . . . . . . . 12 ⊢ 2o ≠ ∅ | |
3 | 2 | neii 2948 | . . . . . . . . . . 11 ⊢ ¬ 2o = ∅ |
4 | 3 | intnanr 487 | . . . . . . . . . 10 ⊢ ¬ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉) |
5 | 2oex 8533 | . . . . . . . . . . 11 ⊢ 2o ∈ V | |
6 | opex 5484 | . . . . . . . . . . 11 ⊢ 〈𝑖, 𝐴〉 ∈ V | |
7 | 5, 6 | opth 5496 | . . . . . . . . . 10 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 ↔ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉)) |
8 | 4, 7 | mtbir 323 | . . . . . . . . 9 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 |
9 | goel 35315 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘∈𝑔𝑗) = 〈∅, 〈𝑘, 𝑗〉〉) | |
10 | 9 | eqeq2d 2751 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉)) |
11 | 8, 10 | mtbiri 327 | . . . . . . . 8 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
12 | 11 | rgen2 3205 | . . . . . . 7 ⊢ ∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
13 | ralnex2 3139 | . . . . . . 7 ⊢ (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) | |
14 | 12, 13 | mpbi 230 | . . . . . 6 ⊢ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
15 | 14 | intnan 486 | . . . . 5 ⊢ ¬ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
16 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) | |
17 | 16 | 2rexbidv 3228 | . . . . . 6 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
18 | fmla0 35350 | . . . . . 6 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗)} | |
19 | 17, 18 | elrab2 3711 | . . . . 5 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) ↔ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
20 | 15, 19 | mtbir 323 | . . . 4 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) |
21 | 1, 20 | eqneltri 2863 | . . 3 ⊢ ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅) |
22 | fveq2 6920 | . . . 4 ⊢ (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅)) | |
23 | 22 | eleq2d 2830 | . . 3 ⊢ (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅))) |
24 | 21, 23 | mtbiri 327 | . 2 ⊢ (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁)) |
25 | 24 | necon2ai 2976 | 1 ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 ωcom 7903 2oc2o 8516 ∈𝑔cgoe 35301 ∀𝑔cgol 35303 Fmlacfmla 35305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-map 8886 df-goel 35308 df-goal 35310 df-sat 35311 df-fmla 35313 |
This theorem is referenced by: goalr 35365 |
Copyright terms: Public domain | W3C validator |