Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > goaln0 | Structured version Visualization version GIF version |
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.) |
Ref | Expression |
---|---|
goaln0 | ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-goal 32875 | . . . 4 ⊢ ∀𝑔𝑖𝐴 = 〈2o, 〈𝑖, 𝐴〉〉 | |
2 | 2on0 8140 | . . . . . . . . . . . 12 ⊢ 2o ≠ ∅ | |
3 | 2 | neii 2936 | . . . . . . . . . . 11 ⊢ ¬ 2o = ∅ |
4 | 3 | intnanr 491 | . . . . . . . . . 10 ⊢ ¬ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉) |
5 | 2oex 8148 | . . . . . . . . . . 11 ⊢ 2o ∈ V | |
6 | opex 5322 | . . . . . . . . . . 11 ⊢ 〈𝑖, 𝐴〉 ∈ V | |
7 | 5, 6 | opth 5334 | . . . . . . . . . 10 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 ↔ (2o = ∅ ∧ 〈𝑖, 𝐴〉 = 〈𝑘, 𝑗〉)) |
8 | 4, 7 | mtbir 326 | . . . . . . . . 9 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉 |
9 | goel 32880 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘∈𝑔𝑗) = 〈∅, 〈𝑘, 𝑗〉〉) | |
10 | 9 | eqeq2d 2749 | . . . . . . . . 9 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = 〈∅, 〈𝑘, 𝑗〉〉)) |
11 | 8, 10 | mtbiri 330 | . . . . . . . 8 ⊢ ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
12 | 11 | rgen2 3115 | . . . . . . 7 ⊢ ∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
13 | ralnex2 3172 | . . . . . . 7 ⊢ (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) | |
14 | 12, 13 | mpbi 233 | . . . . . 6 ⊢ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗) |
15 | 14 | intnan 490 | . . . . 5 ⊢ ¬ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗)) |
16 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) | |
17 | 16 | 2rexbidv 3210 | . . . . . 6 ⊢ (𝑥 = 〈2o, 〈𝑖, 𝐴〉〉 → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
18 | fmla0 32915 | . . . . . 6 ⊢ (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘∈𝑔𝑗)} | |
19 | 17, 18 | elrab2 3591 | . . . . 5 ⊢ (〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) ↔ (〈2o, 〈𝑖, 𝐴〉〉 ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 〈2o, 〈𝑖, 𝐴〉〉 = (𝑘∈𝑔𝑗))) |
20 | 15, 19 | mtbir 326 | . . . 4 ⊢ ¬ 〈2o, 〈𝑖, 𝐴〉〉 ∈ (Fmla‘∅) |
21 | 1, 20 | eqneltri 2826 | . . 3 ⊢ ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅) |
22 | fveq2 6674 | . . . 4 ⊢ (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅)) | |
23 | 22 | eleq2d 2818 | . . 3 ⊢ (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅))) |
24 | 21, 23 | mtbiri 330 | . 2 ⊢ (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁)) |
25 | 24 | necon2ai 2963 | 1 ⊢ (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 Vcvv 3398 ∅c0 4211 〈cop 4522 ‘cfv 6339 (class class class)co 7170 ωcom 7599 2oc2o 8125 ∈𝑔cgoe 32866 ∀𝑔cgol 32868 Fmlacfmla 32870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-map 8439 df-goel 32873 df-goal 32875 df-sat 32876 df-fmla 32878 |
This theorem is referenced by: goalr 32930 |
Copyright terms: Public domain | W3C validator |