Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goaln0 Structured version   Visualization version   GIF version

Theorem goaln0 35376
Description: The "Godel-set of universal quantification" is a Godel formula of at least height 1. (Contributed by AV, 22-Oct-2023.)
Assertion
Ref Expression
goaln0 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Distinct variable group:   𝐴,𝑖
Allowed substitution hint:   𝑁(𝑖)

Proof of Theorem goaln0
Dummy variables 𝑗 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-goal 35325 . . . 4 𝑔𝑖𝐴 = ⟨2o, ⟨𝑖, 𝐴⟩⟩
2 2on0 8402 . . . . . . . . . . . 12 2o ≠ ∅
32neii 2927 . . . . . . . . . . 11 ¬ 2o = ∅
43intnanr 487 . . . . . . . . . 10 ¬ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩)
5 2oex 8399 . . . . . . . . . . 11 2o ∈ V
6 opex 5407 . . . . . . . . . . 11 𝑖, 𝐴⟩ ∈ V
75, 6opth 5419 . . . . . . . . . 10 (⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩ ↔ (2o = ∅ ∧ ⟨𝑖, 𝐴⟩ = ⟨𝑘, 𝑗⟩))
84, 7mtbir 323 . . . . . . . . 9 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩
9 goel 35330 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (𝑘𝑔𝑗) = ⟨∅, ⟨𝑘, 𝑗⟩⟩)
109eqeq2d 2740 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → (⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = ⟨∅, ⟨𝑘, 𝑗⟩⟩))
118, 10mtbiri 327 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1211rgen2 3169 . . . . . . 7 𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
13 ralnex2 3109 . . . . . . 7 (∀𝑘 ∈ ω ∀𝑗 ∈ ω ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗) ↔ ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
1412, 13mpbi 230 . . . . . 6 ¬ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)
1514intnan 486 . . . . 5 ¬ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗))
16 eqeq1 2733 . . . . . . 7 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (𝑥 = (𝑘𝑔𝑗) ↔ ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
17162rexbidv 3194 . . . . . 6 (𝑥 = ⟨2o, ⟨𝑖, 𝐴⟩⟩ → (∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗) ↔ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
18 fmla0 35365 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑘 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑘𝑔𝑗)}
1917, 18elrab2 3651 . . . . 5 (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅) ↔ (⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ V ∧ ∃𝑘 ∈ ω ∃𝑗 ∈ ω ⟨2o, ⟨𝑖, 𝐴⟩⟩ = (𝑘𝑔𝑗)))
2015, 19mtbir 323 . . . 4 ¬ ⟨2o, ⟨𝑖, 𝐴⟩⟩ ∈ (Fmla‘∅)
211, 20eqneltri 2847 . . 3 ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)
22 fveq2 6822 . . . 4 (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅))
2322eleq2d 2814 . . 3 (𝑁 = ∅ → (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) ↔ ∀𝑔𝑖𝐴 ∈ (Fmla‘∅)))
2421, 23mtbiri 327 . 2 (𝑁 = ∅ → ¬ ∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁))
2524necon2ai 2954 1 (∀𝑔𝑖𝐴 ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  c0 4284  cop 4583  cfv 6482  (class class class)co 7349  ωcom 7799  2oc2o 8382  𝑔cgoe 35316  𝑔cgol 35318  Fmlacfmla 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-map 8755  df-goel 35323  df-goal 35325  df-sat 35326  df-fmla 35328
This theorem is referenced by:  goalr  35380
  Copyright terms: Public domain W3C validator