MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpnnp Structured version   Visualization version   GIF version

Theorem genpnnp 11074
Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpnnp.3 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genpnnp.4 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
Assertion
Ref Expression
genpnnp ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺   𝑦,𝑤,𝑣,𝐺,𝑧   𝑤,𝐴,𝑣   𝑤,𝐵,𝑣   𝑤,𝐹,𝑣
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem genpnnp
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prpssnq 11059 . . . . 5 (𝐴P𝐴Q)
2 pssnel 4494 . . . . 5 (𝐴Q → ∃𝑤(𝑤Q ∧ ¬ 𝑤𝐴))
31, 2syl 17 . . . 4 (𝐴P → ∃𝑤(𝑤Q ∧ ¬ 𝑤𝐴))
4 prpssnq 11059 . . . . 5 (𝐵P𝐵Q)
5 pssnel 4494 . . . . 5 (𝐵Q → ∃𝑣(𝑣Q ∧ ¬ 𝑣𝐵))
64, 5syl 17 . . . 4 (𝐵P → ∃𝑣(𝑣Q ∧ ¬ 𝑣𝐵))
73, 6anim12i 612 . . 3 ((𝐴P𝐵P) → (∃𝑤(𝑤Q ∧ ¬ 𝑤𝐴) ∧ ∃𝑣(𝑣Q ∧ ¬ 𝑣𝐵)))
8 exdistrv 1955 . . 3 (∃𝑤𝑣((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)) ↔ (∃𝑤(𝑤Q ∧ ¬ 𝑤𝐴) ∧ ∃𝑣(𝑣Q ∧ ¬ 𝑣𝐵)))
97, 8sylibr 234 . 2 ((𝐴P𝐵P) → ∃𝑤𝑣((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)))
10 prub 11063 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑓𝐴) ∧ 𝑤Q) → (¬ 𝑤𝐴𝑓 <Q 𝑤))
11 prub 11063 . . . . . . . . . . . . . . . . . 18 (((𝐵P𝑔𝐵) ∧ 𝑣Q) → (¬ 𝑣𝐵𝑔 <Q 𝑣))
1210, 11im2anan9 619 . . . . . . . . . . . . . . . . 17 ((((𝐴P𝑓𝐴) ∧ 𝑤Q) ∧ ((𝐵P𝑔𝐵) ∧ 𝑣Q)) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → (𝑓 <Q 𝑤𝑔 <Q 𝑣)))
13 elprnq 11060 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝑓𝐴) → 𝑓Q)
1413anim1i 614 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑓𝐴) ∧ 𝑤Q) → (𝑓Q𝑤Q))
15 elprnq 11060 . . . . . . . . . . . . . . . . . . 19 ((𝐵P𝑔𝐵) → 𝑔Q)
1615anim1i 614 . . . . . . . . . . . . . . . . . 18 (((𝐵P𝑔𝐵) ∧ 𝑣Q) → (𝑔Q𝑣Q))
17 ltsonq 11038 . . . . . . . . . . . . . . . . . . . . . . 23 <Q Or Q
18 so2nr 5635 . . . . . . . . . . . . . . . . . . . . . . 23 (( <Q Or Q ∧ (𝑓Q𝑤Q)) → ¬ (𝑓 <Q 𝑤𝑤 <Q 𝑓))
1917, 18mpan 689 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓Q𝑤Q) → ¬ (𝑓 <Q 𝑤𝑤 <Q 𝑓))
2019ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) ∧ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)) → ¬ (𝑓 <Q 𝑤𝑤 <Q 𝑓))
21 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔Q𝑣Q) → 𝑣Q)
22 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓Q𝑤Q) → 𝑓Q)
2321, 22anim12i 612 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔Q𝑣Q) ∧ (𝑓Q𝑤Q)) → (𝑣Q𝑓Q))
2423ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) → (𝑣Q𝑓Q))
25 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
26 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑣 ∈ V
27 genpnnp.3 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
28 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
29 genpnnp.4 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐺𝑦) = (𝑦𝐺𝑥)
30 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑔 ∈ V
3125, 26, 27, 28, 29, 30caovord3 7663 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑣Q𝑓Q) ∧ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)) → (𝑤 <Q 𝑓𝑔 <Q 𝑣))
3231anbi2d 629 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣Q𝑓Q) ∧ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)) → ((𝑓 <Q 𝑤𝑤 <Q 𝑓) ↔ (𝑓 <Q 𝑤𝑔 <Q 𝑣)))
3324, 32sylan 579 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) ∧ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)) → ((𝑓 <Q 𝑤𝑤 <Q 𝑓) ↔ (𝑓 <Q 𝑤𝑔 <Q 𝑣)))
3420, 33mtbid 324 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) ∧ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)) → ¬ (𝑓 <Q 𝑤𝑔 <Q 𝑣))
3534ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) → ((𝑤𝐺𝑣) = (𝑓𝐺𝑔) → ¬ (𝑓 <Q 𝑤𝑔 <Q 𝑣)))
3635con2d 134 . . . . . . . . . . . . . . . . . 18 (((𝑓Q𝑤Q) ∧ (𝑔Q𝑣Q)) → ((𝑓 <Q 𝑤𝑔 <Q 𝑣) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
3714, 16, 36syl2an 595 . . . . . . . . . . . . . . . . 17 ((((𝐴P𝑓𝐴) ∧ 𝑤Q) ∧ ((𝐵P𝑔𝐵) ∧ 𝑣Q)) → ((𝑓 <Q 𝑤𝑔 <Q 𝑣) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
3812, 37syld 47 . . . . . . . . . . . . . . . 16 ((((𝐴P𝑓𝐴) ∧ 𝑤Q) ∧ ((𝐵P𝑔𝐵) ∧ 𝑣Q)) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
3938an4s 659 . . . . . . . . . . . . . . 15 ((((𝐴P𝑓𝐴) ∧ (𝐵P𝑔𝐵)) ∧ (𝑤Q𝑣Q)) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
4039ex 412 . . . . . . . . . . . . . 14 (((𝐴P𝑓𝐴) ∧ (𝐵P𝑔𝐵)) → ((𝑤Q𝑣Q) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔))))
4140an4s 659 . . . . . . . . . . . . 13 (((𝐴P𝐵P) ∧ (𝑓𝐴𝑔𝐵)) → ((𝑤Q𝑣Q) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔))))
4241ex 412 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑓𝐴𝑔𝐵) → ((𝑤Q𝑣Q) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))))
4342com24 95 . . . . . . . . . . 11 ((𝐴P𝐵P) → ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) → ((𝑤Q𝑣Q) → ((𝑓𝐴𝑔𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))))
4443imp32 418 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q))) → ((𝑓𝐴𝑔𝐵) → ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
4544ralrimivv 3206 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q))) → ∀𝑓𝐴𝑔𝐵 ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔))
46 ralnex2 3139 . . . . . . . . 9 (∀𝑓𝐴𝑔𝐵 ¬ (𝑤𝐺𝑣) = (𝑓𝐺𝑔) ↔ ¬ ∃𝑓𝐴𝑔𝐵 (𝑤𝐺𝑣) = (𝑓𝐺𝑔))
4745, 46sylib 218 . . . . . . . 8 (((𝐴P𝐵P) ∧ ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q))) → ¬ ∃𝑓𝐴𝑔𝐵 (𝑤𝐺𝑣) = (𝑓𝐺𝑔))
48 genp.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
49 genp.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
5048, 49genpelv 11069 . . . . . . . . 9 ((𝐴P𝐵P) → ((𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
5150adantr 480 . . . . . . . 8 (((𝐴P𝐵P) ∧ ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q))) → ((𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑤𝐺𝑣) = (𝑓𝐺𝑔)))
5247, 51mtbird 325 . . . . . . 7 (((𝐴P𝐵P) ∧ ((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q))) → ¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵))
5352expcom 413 . . . . . 6 (((¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵) ∧ (𝑤Q𝑣Q)) → ((𝐴P𝐵P) → ¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵)))
5453ancoms 458 . . . . 5 (((𝑤Q𝑣Q) ∧ (¬ 𝑤𝐴 ∧ ¬ 𝑣𝐵)) → ((𝐴P𝐵P) → ¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵)))
5554an4s 659 . . . 4 (((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)) → ((𝐴P𝐵P) → ¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵)))
5649caovcl 7644 . . . . . 6 ((𝑤Q𝑣Q) → (𝑤𝐺𝑣) ∈ Q)
57 eleq2 2833 . . . . . . . 8 ((𝐴𝐹𝐵) = Q → ((𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) ↔ (𝑤𝐺𝑣) ∈ Q))
5857biimprcd 250 . . . . . . 7 ((𝑤𝐺𝑣) ∈ Q → ((𝐴𝐹𝐵) = Q → (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵)))
5958con3d 152 . . . . . 6 ((𝑤𝐺𝑣) ∈ Q → (¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = Q))
6056, 59syl 17 . . . . 5 ((𝑤Q𝑣Q) → (¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = Q))
6160ad2ant2r 746 . . . 4 (((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)) → (¬ (𝑤𝐺𝑣) ∈ (𝐴𝐹𝐵) → ¬ (𝐴𝐹𝐵) = Q))
6255, 61syldc 48 . . 3 ((𝐴P𝐵P) → (((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)) → ¬ (𝐴𝐹𝐵) = Q))
6362exlimdvv 1933 . 2 ((𝐴P𝐵P) → (∃𝑤𝑣((𝑤Q ∧ ¬ 𝑤𝐴) ∧ (𝑣Q ∧ ¬ 𝑣𝐵)) → ¬ (𝐴𝐹𝐵) = Q))
649, 63mpd 15 1 ((𝐴P𝐵P) → ¬ (𝐴𝐹𝐵) = Q)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  wpss 3977   class class class wbr 5166   Or wor 5606  (class class class)co 7448  cmpo 7450  Qcnq 10921   <Q cltq 10927  Pcnp 10928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-mi 10943  df-lti 10944  df-ltpq 10979  df-enq 10980  df-nq 10981  df-ltnq 10987  df-np 11050
This theorem is referenced by:  genpcl  11077
  Copyright terms: Public domain W3C validator