Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlaomn0 Structured version   Visualization version   GIF version

Theorem fmlaomn0 33252
Description: The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
fmlaomn0 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))

Proof of Theorem fmlaomn0
Dummy variables 𝑥 𝑖 𝑗 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2824 . . . 4 (𝑥 = ∅ → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘∅)))
32notbid 317 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘∅)))
4 fveq2 6756 . . . . 5 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
54eleq2d 2824 . . . 4 (𝑥 = 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑦)))
65notbid 317 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑦)))
7 fveq2 6756 . . . . 5 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
87eleq2d 2824 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘suc 𝑦)))
98notbid 317 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘suc 𝑦)))
10 fveq2 6756 . . . . 5 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
1110eleq2d 2824 . . . 4 (𝑥 = 𝑁 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑁)))
1211notbid 317 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑁)))
13 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
14 opex 5373 . . . . . . . . . . . 12 𝑖, 𝑗⟩ ∈ V
1513, 14pm3.2i 470 . . . . . . . . . . 11 (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V)
1615a1i 11 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
17 necom 2996 . . . . . . . . . . 11 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅)
18 opnz 5382 . . . . . . . . . . 11 (⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
1917, 18bitri 274 . . . . . . . . . 10 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
2016, 19sylibr 233 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2120neneqd 2947 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
22 goel 33209 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2322eqeq2d 2749 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ = (𝑖𝑔𝑗) ↔ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2421, 23mtbird 324 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = (𝑖𝑔𝑗))
2524rgen2 3126 . . . . . 6 𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗)
26 ralnex2 3188 . . . . . 6 (∀𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗) ↔ ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
2725, 26mpbi 229 . . . . 5 ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)
2827intnan 486 . . . 4 ¬ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
29 fmla0 33244 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3029eleq2i 2830 . . . . 5 (∅ ∈ (Fmla‘∅) ↔ ∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
31 eqeq1 2742 . . . . . . 7 (𝑥 = ∅ → (𝑥 = (𝑖𝑔𝑗) ↔ ∅ = (𝑖𝑔𝑗)))
32312rexbidv 3228 . . . . . 6 (𝑥 = ∅ → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3332elrab 3617 . . . . 5 (∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3430, 33bitri 274 . . . 4 (∅ ∈ (Fmla‘∅) ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3528, 34mtbir 322 . . 3 ¬ ∅ ∈ (Fmla‘∅)
36 simpr 484 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘𝑦))
37 1oex 8280 . . . . . . . . . . . . . 14 1o ∈ V
38 opex 5373 . . . . . . . . . . . . . 14 𝑢, 𝑣⟩ ∈ V
3937, 38opnzi 5383 . . . . . . . . . . . . 13 ⟨1o, ⟨𝑢, 𝑣⟩⟩ ≠ ∅
4039nesymi 3000 . . . . . . . . . . . 12 ¬ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩
41 gonafv 33212 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑦) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4241adantll 710 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4342eqeq2d 2749 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (∅ = (𝑢𝑔𝑣) ↔ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
4440, 43mtbiri 326 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → ¬ ∅ = (𝑢𝑔𝑣))
4544ralrimiva 3107 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣))
46 2oex 8284 . . . . . . . . . . . . . . 15 2o ∈ V
47 opex 5373 . . . . . . . . . . . . . . 15 𝑖, 𝑢⟩ ∈ V
4846, 47opnzi 5383 . . . . . . . . . . . . . 14 ⟨2o, ⟨𝑖, 𝑢⟩⟩ ≠ ∅
4948nesymi 3000 . . . . . . . . . . . . 13 ¬ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
50 df-goal 33204 . . . . . . . . . . . . . 14 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
5150eqeq2i 2751 . . . . . . . . . . . . 13 (∅ = ∀𝑔𝑖𝑢 ↔ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
5249, 51mtbir 322 . . . . . . . . . . . 12 ¬ ∅ = ∀𝑔𝑖𝑢
5352a1i 11 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑖 ∈ ω) → ¬ ∅ = ∀𝑔𝑖𝑢)
5453ralrimiva 3107 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢)
5545, 54jca 511 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5655ralrimiva 3107 . . . . . . . 8 (𝑦 ∈ ω → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5756adantr 480 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
58 ralnex 3163 . . . . . . . . . . 11 (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣))
59 ralnex 3163 . . . . . . . . . . 11 (∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)
6058, 59anbi12i 626 . . . . . . . . . 10 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
61 ioran 980 . . . . . . . . . 10 (¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6260, 61bitr4i 277 . . . . . . . . 9 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6362ralbii 3090 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
64 ralnex 3163 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6563, 64bitri 274 . . . . . . 7 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6657, 65sylib 217 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
67 ioran 980 . . . . . 6 (¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)) ↔ (¬ ∅ ∈ (Fmla‘𝑦) ∧ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
6836, 66, 67sylanbrc 582 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
69 fmlasuc 33248 . . . . . . . 8 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
7069eleq2d 2824 . . . . . . 7 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ ∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})))
71 elun 4079 . . . . . . . 8 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
72 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = (𝑢𝑔𝑣) ↔ ∅ = (𝑢𝑔𝑣)))
7372rexbidv 3225 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣)))
74 eqeq1 2742 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ∅ = ∀𝑔𝑖𝑢))
7574rexbidv 3225 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7673, 75orbi12d 915 . . . . . . . . . . 11 (𝑥 = ∅ → ((∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7776rexbidv 3225 . . . . . . . . . 10 (𝑥 = ∅ → (∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7813, 77elab 3602 . . . . . . . . 9 (∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7978orbi2i 909 . . . . . . . 8 ((∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8071, 79bitri 274 . . . . . . 7 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8170, 80bitrdi 286 . . . . . 6 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8281adantr 480 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8368, 82mtbird 324 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘suc 𝑦))
8483ex 412 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ (Fmla‘𝑦) → ¬ ∅ ∈ (Fmla‘suc 𝑦)))
853, 6, 9, 12, 35, 84finds 7719 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑁))
86 df-nel 3049 . 2 (∅ ∉ (Fmla‘𝑁) ↔ ¬ ∅ ∈ (Fmla‘𝑁))
8785, 86sylibr 233 1 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wnel 3048  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cun 3881  c0 4253  cop 4564  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  2oc2o 8261  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-map 8575  df-goel 33202  df-gona 33203  df-goal 33204  df-sat 33205  df-fmla 33207
This theorem is referenced by:  fmlan0  33253  gonan0  33254
  Copyright terms: Public domain W3C validator