Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlaomn0 Structured version   Visualization version   GIF version

Theorem fmlaomn0 35417
Description: The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
fmlaomn0 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))

Proof of Theorem fmlaomn0
Dummy variables 𝑥 𝑖 𝑗 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . 5 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2821 . . . 4 (𝑥 = ∅ → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘∅)))
32notbid 318 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘∅)))
4 fveq2 6881 . . . . 5 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
54eleq2d 2821 . . . 4 (𝑥 = 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑦)))
65notbid 318 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑦)))
7 fveq2 6881 . . . . 5 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
87eleq2d 2821 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘suc 𝑦)))
98notbid 318 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘suc 𝑦)))
10 fveq2 6881 . . . . 5 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
1110eleq2d 2821 . . . 4 (𝑥 = 𝑁 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑁)))
1211notbid 318 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑁)))
13 0ex 5282 . . . . . . . . . . . 12 ∅ ∈ V
14 opex 5444 . . . . . . . . . . . 12 𝑖, 𝑗⟩ ∈ V
1513, 14pm3.2i 470 . . . . . . . . . . 11 (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V)
1615a1i 11 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
17 necom 2986 . . . . . . . . . . 11 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅)
18 opnz 5453 . . . . . . . . . . 11 (⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
1917, 18bitri 275 . . . . . . . . . 10 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
2016, 19sylibr 234 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2120neneqd 2938 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
22 goel 35374 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2322eqeq2d 2747 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ = (𝑖𝑔𝑗) ↔ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2421, 23mtbird 325 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = (𝑖𝑔𝑗))
2524rgen2 3185 . . . . . 6 𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗)
26 ralnex2 3121 . . . . . 6 (∀𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗) ↔ ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
2725, 26mpbi 230 . . . . 5 ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)
2827intnan 486 . . . 4 ¬ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
29 fmla0 35409 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3029eleq2i 2827 . . . . 5 (∅ ∈ (Fmla‘∅) ↔ ∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
31 eqeq1 2740 . . . . . . 7 (𝑥 = ∅ → (𝑥 = (𝑖𝑔𝑗) ↔ ∅ = (𝑖𝑔𝑗)))
32312rexbidv 3210 . . . . . 6 (𝑥 = ∅ → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3332elrab 3676 . . . . 5 (∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3430, 33bitri 275 . . . 4 (∅ ∈ (Fmla‘∅) ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3528, 34mtbir 323 . . 3 ¬ ∅ ∈ (Fmla‘∅)
36 simpr 484 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘𝑦))
37 1oex 8495 . . . . . . . . . . . . . 14 1o ∈ V
38 opex 5444 . . . . . . . . . . . . . 14 𝑢, 𝑣⟩ ∈ V
3937, 38opnzi 5454 . . . . . . . . . . . . 13 ⟨1o, ⟨𝑢, 𝑣⟩⟩ ≠ ∅
4039nesymi 2990 . . . . . . . . . . . 12 ¬ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩
41 gonafv 35377 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑦) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4241adantll 714 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4342eqeq2d 2747 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (∅ = (𝑢𝑔𝑣) ↔ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
4440, 43mtbiri 327 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → ¬ ∅ = (𝑢𝑔𝑣))
4544ralrimiva 3133 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣))
46 2oex 8496 . . . . . . . . . . . . . . 15 2o ∈ V
47 opex 5444 . . . . . . . . . . . . . . 15 𝑖, 𝑢⟩ ∈ V
4846, 47opnzi 5454 . . . . . . . . . . . . . 14 ⟨2o, ⟨𝑖, 𝑢⟩⟩ ≠ ∅
4948nesymi 2990 . . . . . . . . . . . . 13 ¬ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
50 df-goal 35369 . . . . . . . . . . . . . 14 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
5150eqeq2i 2749 . . . . . . . . . . . . 13 (∅ = ∀𝑔𝑖𝑢 ↔ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
5249, 51mtbir 323 . . . . . . . . . . . 12 ¬ ∅ = ∀𝑔𝑖𝑢
5352a1i 11 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑖 ∈ ω) → ¬ ∅ = ∀𝑔𝑖𝑢)
5453ralrimiva 3133 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢)
5545, 54jca 511 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5655ralrimiva 3133 . . . . . . . 8 (𝑦 ∈ ω → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5756adantr 480 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
58 ralnex 3063 . . . . . . . . . . 11 (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣))
59 ralnex 3063 . . . . . . . . . . 11 (∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)
6058, 59anbi12i 628 . . . . . . . . . 10 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
61 ioran 985 . . . . . . . . . 10 (¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6260, 61bitr4i 278 . . . . . . . . 9 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6362ralbii 3083 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
64 ralnex 3063 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6563, 64bitri 275 . . . . . . 7 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6657, 65sylib 218 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
67 ioran 985 . . . . . 6 (¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)) ↔ (¬ ∅ ∈ (Fmla‘𝑦) ∧ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
6836, 66, 67sylanbrc 583 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
69 fmlasuc 35413 . . . . . . . 8 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
7069eleq2d 2821 . . . . . . 7 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ ∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})))
71 elun 4133 . . . . . . . 8 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
72 eqeq1 2740 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = (𝑢𝑔𝑣) ↔ ∅ = (𝑢𝑔𝑣)))
7372rexbidv 3165 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣)))
74 eqeq1 2740 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ∅ = ∀𝑔𝑖𝑢))
7574rexbidv 3165 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7673, 75orbi12d 918 . . . . . . . . . . 11 (𝑥 = ∅ → ((∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7776rexbidv 3165 . . . . . . . . . 10 (𝑥 = ∅ → (∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7813, 77elab 3663 . . . . . . . . 9 (∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7978orbi2i 912 . . . . . . . 8 ((∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8071, 79bitri 275 . . . . . . 7 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8170, 80bitrdi 287 . . . . . 6 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8281adantr 480 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8368, 82mtbird 325 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘suc 𝑦))
8483ex 412 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ (Fmla‘𝑦) → ¬ ∅ ∈ (Fmla‘suc 𝑦)))
853, 6, 9, 12, 35, 84finds 7897 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑁))
86 df-nel 3038 . 2 (∅ ∉ (Fmla‘𝑁) ↔ ¬ ∅ ∈ (Fmla‘𝑁))
8785, 86sylibr 234 1 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wnel 3037  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  cun 3929  c0 4313  cop 4612  suc csuc 6359  cfv 6536  (class class class)co 7410  ωcom 7866  1oc1o 8478  2oc2o 8479  𝑔cgoe 35360  𝑔cgna 35361  𝑔cgol 35362  Fmlacfmla 35364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-map 8847  df-goel 35367  df-gona 35368  df-goal 35369  df-sat 35370  df-fmla 35372
This theorem is referenced by:  fmlan0  35418  gonan0  35419
  Copyright terms: Public domain W3C validator