Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlaomn0 Structured version   Visualization version   GIF version

Theorem fmlaomn0 35384
Description: The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
fmlaomn0 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))

Proof of Theorem fmlaomn0
Dummy variables 𝑥 𝑖 𝑗 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑥 = ∅ → (Fmla‘𝑥) = (Fmla‘∅))
21eleq2d 2815 . . . 4 (𝑥 = ∅ → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘∅)))
32notbid 318 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘∅)))
4 fveq2 6861 . . . . 5 (𝑥 = 𝑦 → (Fmla‘𝑥) = (Fmla‘𝑦))
54eleq2d 2815 . . . 4 (𝑥 = 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑦)))
65notbid 318 . . 3 (𝑥 = 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑦)))
7 fveq2 6861 . . . . 5 (𝑥 = suc 𝑦 → (Fmla‘𝑥) = (Fmla‘suc 𝑦))
87eleq2d 2815 . . . 4 (𝑥 = suc 𝑦 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘suc 𝑦)))
98notbid 318 . . 3 (𝑥 = suc 𝑦 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘suc 𝑦)))
10 fveq2 6861 . . . . 5 (𝑥 = 𝑁 → (Fmla‘𝑥) = (Fmla‘𝑁))
1110eleq2d 2815 . . . 4 (𝑥 = 𝑁 → (∅ ∈ (Fmla‘𝑥) ↔ ∅ ∈ (Fmla‘𝑁)))
1211notbid 318 . . 3 (𝑥 = 𝑁 → (¬ ∅ ∈ (Fmla‘𝑥) ↔ ¬ ∅ ∈ (Fmla‘𝑁)))
13 0ex 5265 . . . . . . . . . . . 12 ∅ ∈ V
14 opex 5427 . . . . . . . . . . . 12 𝑖, 𝑗⟩ ∈ V
1513, 14pm3.2i 470 . . . . . . . . . . 11 (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V)
1615a1i 11 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
17 necom 2979 . . . . . . . . . . 11 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅)
18 opnz 5436 . . . . . . . . . . 11 (⟨∅, ⟨𝑖, 𝑗⟩⟩ ≠ ∅ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
1917, 18bitri 275 . . . . . . . . . 10 (∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (∅ ∈ V ∧ ⟨𝑖, 𝑗⟩ ∈ V))
2016, 19sylibr 234 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ≠ ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2120neneqd 2931 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
22 goel 35341 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2322eqeq2d 2741 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (∅ = (𝑖𝑔𝑗) ↔ ∅ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2421, 23mtbird 325 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ∅ = (𝑖𝑔𝑗))
2524rgen2 3178 . . . . . 6 𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗)
26 ralnex2 3114 . . . . . 6 (∀𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ∅ = (𝑖𝑔𝑗) ↔ ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
2725, 26mpbi 230 . . . . 5 ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)
2827intnan 486 . . . 4 ¬ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗))
29 fmla0 35376 . . . . . 6 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3029eleq2i 2821 . . . . 5 (∅ ∈ (Fmla‘∅) ↔ ∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)})
31 eqeq1 2734 . . . . . . 7 (𝑥 = ∅ → (𝑥 = (𝑖𝑔𝑗) ↔ ∅ = (𝑖𝑔𝑗)))
32312rexbidv 3203 . . . . . 6 (𝑥 = ∅ → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3332elrab 3662 . . . . 5 (∅ ∈ {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3430, 33bitri 275 . . . 4 (∅ ∈ (Fmla‘∅) ↔ (∅ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ∅ = (𝑖𝑔𝑗)))
3528, 34mtbir 323 . . 3 ¬ ∅ ∈ (Fmla‘∅)
36 simpr 484 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘𝑦))
37 1oex 8447 . . . . . . . . . . . . . 14 1o ∈ V
38 opex 5427 . . . . . . . . . . . . . 14 𝑢, 𝑣⟩ ∈ V
3937, 38opnzi 5437 . . . . . . . . . . . . 13 ⟨1o, ⟨𝑢, 𝑣⟩⟩ ≠ ∅
4039nesymi 2983 . . . . . . . . . . . 12 ¬ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩
41 gonafv 35344 . . . . . . . . . . . . . 14 ((𝑢 ∈ (Fmla‘𝑦) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4241adantll 714 . . . . . . . . . . . . 13 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
4342eqeq2d 2741 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → (∅ = (𝑢𝑔𝑣) ↔ ∅ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
4440, 43mtbiri 327 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑣 ∈ (Fmla‘𝑦)) → ¬ ∅ = (𝑢𝑔𝑣))
4544ralrimiva 3126 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣))
46 2oex 8448 . . . . . . . . . . . . . . 15 2o ∈ V
47 opex 5427 . . . . . . . . . . . . . . 15 𝑖, 𝑢⟩ ∈ V
4846, 47opnzi 5437 . . . . . . . . . . . . . 14 ⟨2o, ⟨𝑖, 𝑢⟩⟩ ≠ ∅
4948nesymi 2983 . . . . . . . . . . . . 13 ¬ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩
50 df-goal 35336 . . . . . . . . . . . . . 14 𝑔𝑖𝑢 = ⟨2o, ⟨𝑖, 𝑢⟩⟩
5150eqeq2i 2743 . . . . . . . . . . . . 13 (∅ = ∀𝑔𝑖𝑢 ↔ ∅ = ⟨2o, ⟨𝑖, 𝑢⟩⟩)
5249, 51mtbir 323 . . . . . . . . . . . 12 ¬ ∅ = ∀𝑔𝑖𝑢
5352a1i 11 . . . . . . . . . . 11 (((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) ∧ 𝑖 ∈ ω) → ¬ ∅ = ∀𝑔𝑖𝑢)
5453ralrimiva 3126 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢)
5545, 54jca 511 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑢 ∈ (Fmla‘𝑦)) → (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5655ralrimiva 3126 . . . . . . . 8 (𝑦 ∈ ω → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
5756adantr 480 . . . . . . 7 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢))
58 ralnex 3056 . . . . . . . . . . 11 (∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ↔ ¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣))
59 ralnex 3056 . . . . . . . . . . 11 (∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢 ↔ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)
6058, 59anbi12i 628 . . . . . . . . . 10 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
61 ioran 985 . . . . . . . . . 10 (¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ (¬ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∧ ¬ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6260, 61bitr4i 278 . . . . . . . . 9 ((∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6362ralbii 3076 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
64 ralnex 3056 . . . . . . . 8 (∀𝑢 ∈ (Fmla‘𝑦) ¬ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6563, 64bitri 275 . . . . . . 7 (∀𝑢 ∈ (Fmla‘𝑦)(∀𝑣 ∈ (Fmla‘𝑦) ¬ ∅ = (𝑢𝑔𝑣) ∧ ∀𝑖 ∈ ω ¬ ∅ = ∀𝑔𝑖𝑢) ↔ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
6657, 65sylib 218 . . . . . 6 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
67 ioran 985 . . . . . 6 (¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)) ↔ (¬ ∅ ∈ (Fmla‘𝑦) ∧ ¬ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
6836, 66, 67sylanbrc 583 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
69 fmlasuc 35380 . . . . . . . 8 (𝑦 ∈ ω → (Fmla‘suc 𝑦) = ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
7069eleq2d 2815 . . . . . . 7 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ ∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})))
71 elun 4119 . . . . . . . 8 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
72 eqeq1 2734 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = (𝑢𝑔𝑣) ↔ ∅ = (𝑢𝑔𝑣)))
7372rexbidv 3158 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣)))
74 eqeq1 2734 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥 = ∀𝑔𝑖𝑢 ↔ ∅ = ∀𝑔𝑖𝑢))
7574rexbidv 3158 . . . . . . . . . . . 12 (𝑥 = ∅ → (∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7673, 75orbi12d 918 . . . . . . . . . . 11 (𝑥 = ∅ → ((∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7776rexbidv 3158 . . . . . . . . . 10 (𝑥 = ∅ → (∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
7813, 77elab 3649 . . . . . . . . 9 (∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))
7978orbi2i 912 . . . . . . . 8 ((∅ ∈ (Fmla‘𝑦) ∨ ∅ ∈ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8071, 79bitri 275 . . . . . . 7 (∅ ∈ ((Fmla‘𝑦) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢)))
8170, 80bitrdi 287 . . . . . 6 (𝑦 ∈ ω → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8281adantr 480 . . . . 5 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → (∅ ∈ (Fmla‘suc 𝑦) ↔ (∅ ∈ (Fmla‘𝑦) ∨ ∃𝑢 ∈ (Fmla‘𝑦)(∃𝑣 ∈ (Fmla‘𝑦)∅ = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω ∅ = ∀𝑔𝑖𝑢))))
8368, 82mtbird 325 . . . 4 ((𝑦 ∈ ω ∧ ¬ ∅ ∈ (Fmla‘𝑦)) → ¬ ∅ ∈ (Fmla‘suc 𝑦))
8483ex 412 . . 3 (𝑦 ∈ ω → (¬ ∅ ∈ (Fmla‘𝑦) → ¬ ∅ ∈ (Fmla‘suc 𝑦)))
853, 6, 9, 12, 35, 84finds 7875 . 2 (𝑁 ∈ ω → ¬ ∅ ∈ (Fmla‘𝑁))
86 df-nel 3031 . 2 (∅ ∉ (Fmla‘𝑁) ↔ ¬ ∅ ∈ (Fmla‘𝑁))
8785, 86sylibr 234 1 (𝑁 ∈ ω → ∅ ∉ (Fmla‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wnel 3030  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  c0 4299  cop 4598  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  𝑔cgoe 35327  𝑔cgna 35328  𝑔cgol 35329  Fmlacfmla 35331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-map 8804  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-fmla 35339
This theorem is referenced by:  fmlan0  35385  gonan0  35386
  Copyright terms: Public domain W3C validator