Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonan0 Structured version   Visualization version   GIF version

Theorem gonan0 35419
Description: The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonan0 ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)

Proof of Theorem gonan0
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8505 . . . . . . . . . . . . 13 1o ≠ ∅
21neii 2935 . . . . . . . . . . . 12 ¬ 1o = ∅
32intnanr 487 . . . . . . . . . . 11 ¬ (1o = ∅ ∧ ⟨𝐴, 𝐵⟩ = ⟨𝑖, 𝑗⟩)
4 1oex 8495 . . . . . . . . . . . 12 1o ∈ V
5 opex 5444 . . . . . . . . . . . 12 𝐴, 𝐵⟩ ∈ V
64, 5opth 5456 . . . . . . . . . . 11 (⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝐴, 𝐵⟩ = ⟨𝑖, 𝑗⟩))
73, 6mtbir 323 . . . . . . . . . 10 ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩
8 goel 35374 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
98eqeq2d 2747 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
107, 9mtbiri 327 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
1110rgen2 3185 . . . . . . . 8 𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)
12 ralnex2 3121 . . . . . . . 8 (∀𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗) ↔ ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
1311, 12mpbi 230 . . . . . . 7 ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)
1413intnan 486 . . . . . 6 ¬ (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
15 eqeq1 2740 . . . . . . . 8 (𝑥 = ⟨1o, ⟨𝐴, 𝐵⟩⟩ → (𝑥 = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
16152rexbidv 3210 . . . . . . 7 (𝑥 = ⟨1o, ⟨𝐴, 𝐵⟩⟩ → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
17 fmla0 35409 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
1816, 17elrab2 3679 . . . . . 6 (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅) ↔ (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
1914, 18mtbir 323 . . . . 5 ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅)
20 gonafv 35377 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
2120eleq1d 2820 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅)))
2219, 21mtbiri 327 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
23 eqid 2736 . . . . . . . . 9 (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
2423dmmptss 6235 . . . . . . . 8 dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) ⊆ (V × V)
25 relxp 5677 . . . . . . . 8 Rel (V × V)
26 relss 5765 . . . . . . . 8 (dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) ⊆ (V × V) → (Rel (V × V) → Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)))
2724, 25, 26mp2 9 . . . . . . 7 Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
28 df-gona 35368 . . . . . . . . 9 𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
2928dmeqi 5889 . . . . . . . 8 dom ⊼𝑔 = dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
3029releqi 5761 . . . . . . 7 (Rel dom ⊼𝑔 ↔ Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩))
3127, 30mpbir 231 . . . . . 6 Rel dom ⊼𝑔
3231ovprc 7448 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑔𝐵) = ∅)
33 peano1 7889 . . . . . . . 8 ∅ ∈ ω
34 fmlaomn0 35417 . . . . . . . 8 (∅ ∈ ω → ∅ ∉ (Fmla‘∅))
3533, 34ax-mp 5 . . . . . . 7 ∅ ∉ (Fmla‘∅)
3635neli 3039 . . . . . 6 ¬ ∅ ∈ (Fmla‘∅)
37 eleq1 2823 . . . . . 6 ((𝐴𝑔𝐵) = ∅ → ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ∅ ∈ (Fmla‘∅)))
3836, 37mtbiri 327 . . . . 5 ((𝐴𝑔𝐵) = ∅ → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
3932, 38syl 17 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
4022, 39pm2.61i 182 . . 3 ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅)
41 fveq2 6881 . . . 4 (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅))
4241eleq2d 2821 . . 3 (𝑁 = ∅ → ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) ↔ (𝐴𝑔𝐵) ∈ (Fmla‘∅)))
4340, 42mtbiri 327 . 2 (𝑁 = ∅ → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘𝑁))
4443necon2ai 2962 1 ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wnel 3037  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313  cop 4612  cmpt 5206   × cxp 5657  dom cdm 5659  Rel wrel 5664  cfv 6536  (class class class)co 7410  ωcom 7866  1oc1o 8478  𝑔cgoe 35360  𝑔cgna 35361  Fmlacfmla 35364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-map 8847  df-goel 35367  df-gona 35368  df-goal 35369  df-sat 35370  df-fmla 35372
This theorem is referenced by:  gonar  35422
  Copyright terms: Public domain W3C validator