Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonan0 Structured version   Visualization version   GIF version

Theorem gonan0 35508
Description: The "Godel-set of NAND" is a Godel formula of at least height 1. (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonan0 ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)

Proof of Theorem gonan0
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8412 . . . . . . . . . . . . 13 1o ≠ ∅
21neii 2931 . . . . . . . . . . . 12 ¬ 1o = ∅
32intnanr 487 . . . . . . . . . . 11 ¬ (1o = ∅ ∧ ⟨𝐴, 𝐵⟩ = ⟨𝑖, 𝑗⟩)
4 1oex 8404 . . . . . . . . . . . 12 1o ∈ V
5 opex 5409 . . . . . . . . . . . 12 𝐴, 𝐵⟩ ∈ V
64, 5opth 5421 . . . . . . . . . . 11 (⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ (1o = ∅ ∧ ⟨𝐴, 𝐵⟩ = ⟨𝑖, 𝑗⟩))
73, 6mtbir 323 . . . . . . . . . 10 ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩
8 goel 35463 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
98eqeq2d 2744 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
107, 9mtbiri 327 . . . . . . . . 9 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
1110rgen2 3173 . . . . . . . 8 𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)
12 ralnex2 3113 . . . . . . . 8 (∀𝑖 ∈ ω ∀𝑗 ∈ ω ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗) ↔ ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
1311, 12mpbi 230 . . . . . . 7 ¬ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)
1413intnan 486 . . . . . 6 ¬ (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗))
15 eqeq1 2737 . . . . . . . 8 (𝑥 = ⟨1o, ⟨𝐴, 𝐵⟩⟩ → (𝑥 = (𝑖𝑔𝑗) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
16152rexbidv 3198 . . . . . . 7 (𝑥 = ⟨1o, ⟨𝐴, 𝐵⟩⟩ → (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
17 fmla0 35498 . . . . . . 7 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
1816, 17elrab2 3646 . . . . . 6 (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅) ↔ (⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ V ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω ⟨1o, ⟨𝐴, 𝐵⟩⟩ = (𝑖𝑔𝑗)))
1914, 18mtbir 323 . . . . 5 ¬ ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅)
20 gonafv 35466 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑔𝐵) = ⟨1o, ⟨𝐴, 𝐵⟩⟩)
2120eleq1d 2818 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ⟨1o, ⟨𝐴, 𝐵⟩⟩ ∈ (Fmla‘∅)))
2219, 21mtbiri 327 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
23 eqid 2733 . . . . . . . . 9 (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
2423dmmptss 6196 . . . . . . . 8 dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) ⊆ (V × V)
25 relxp 5639 . . . . . . . 8 Rel (V × V)
26 relss 5728 . . . . . . . 8 (dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩) ⊆ (V × V) → (Rel (V × V) → Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)))
2724, 25, 26mp2 9 . . . . . . 7 Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
28 df-gona 35457 . . . . . . . . 9 𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
2928dmeqi 5850 . . . . . . . 8 dom ⊼𝑔 = dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
3029releqi 5724 . . . . . . 7 (Rel dom ⊼𝑔 ↔ Rel dom (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩))
3127, 30mpbir 231 . . . . . 6 Rel dom ⊼𝑔
3231ovprc 7393 . . . . 5 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑔𝐵) = ∅)
33 peano1 7828 . . . . . . . 8 ∅ ∈ ω
34 fmlaomn0 35506 . . . . . . . 8 (∅ ∈ ω → ∅ ∉ (Fmla‘∅))
3533, 34ax-mp 5 . . . . . . 7 ∅ ∉ (Fmla‘∅)
3635neli 3035 . . . . . 6 ¬ ∅ ∈ (Fmla‘∅)
37 eleq1 2821 . . . . . 6 ((𝐴𝑔𝐵) = ∅ → ((𝐴𝑔𝐵) ∈ (Fmla‘∅) ↔ ∅ ∈ (Fmla‘∅)))
3836, 37mtbiri 327 . . . . 5 ((𝐴𝑔𝐵) = ∅ → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
3932, 38syl 17 . . . 4 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅))
4022, 39pm2.61i 182 . . 3 ¬ (𝐴𝑔𝐵) ∈ (Fmla‘∅)
41 fveq2 6831 . . . 4 (𝑁 = ∅ → (Fmla‘𝑁) = (Fmla‘∅))
4241eleq2d 2819 . . 3 (𝑁 = ∅ → ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) ↔ (𝐴𝑔𝐵) ∈ (Fmla‘∅)))
4340, 42mtbiri 327 . 2 (𝑁 = ∅ → ¬ (𝐴𝑔𝐵) ∈ (Fmla‘𝑁))
4443necon2ai 2958 1 ((𝐴𝑔𝐵) ∈ (Fmla‘𝑁) → 𝑁 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wnel 3033  wral 3048  wrex 3057  Vcvv 3437  wss 3898  c0 4282  cop 4583  cmpt 5176   × cxp 5619  dom cdm 5621  Rel wrel 5626  cfv 6489  (class class class)co 7355  ωcom 7805  1oc1o 8387  𝑔cgoe 35449  𝑔cgna 35450  Fmlacfmla 35453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-map 8761  df-goel 35456  df-gona 35457  df-goal 35458  df-sat 35459  df-fmla 35461
This theorem is referenced by:  gonar  35511
  Copyright terms: Public domain W3C validator