![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3321 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ral 3060 df-rex 3069 |
This theorem is referenced by: ralrab2 3707 ralprgf 4699 ralprg 4701 raltpg 4703 ralxp 5855 f12dfv 7293 f13dfv 7294 ralrnmpo 7572 ovmptss 8117 ixpfi2 9388 dffi3 9469 dfoi 9549 ssttrcl 9753 fseqenlem1 10062 kmlem12 10200 fzprval 13622 fztpval 13623 hashbc 14489 2prm 16726 prmreclem2 16951 xpsfrnel 17609 xpsle 17626 gsumwspan 18872 sgrp2rid2 18952 psgnunilem3 19529 pmtrsn 19552 islinds2 21851 ply1coe 22318 cply1coe0bi 22322 m2cpminvid2lem 22776 basdif0 22976 ordtbaslem 23212 ptbasfi 23605 ptcnplem 23645 ptrescn 23663 flftg 24020 ust0 24244 minveclem1 25472 minveclem3b 25476 minveclem6 25482 iblcnlem1 25838 ellimc2 25927 ftalem3 27133 dchreq 27317 pntlem3 27668 negsbdaylem 28103 precsexlem9 28254 istrkg2ld 28483 istrkg3ld 28484 tgcgr4 28554 elntg2 29015 lfuhgr1v0e 29286 cplgr0 29457 wlkp1lem8 29713 usgr2pthlem 29796 pthdlem1 29799 pthd 29802 crctcshwlkn0 29851 2wlkdlem4 29958 2wlkdlem5 29959 2pthdlem1 29960 2wlkdlem10 29965 rusgrnumwwlkl1 29998 0ewlk 30143 0wlk 30145 wlk2v2elem2 30185 3wlkdlem4 30191 3wlkdlem5 30192 3pthdlem1 30193 3wlkdlem10 30198 minvecolem1 30903 minvecolem5 30910 minvecolem6 30911 cdj3lem3b 32469 chnub 32986 prsiga 34112 hfext 36165 filnetlem4 36364 relowlssretop 37346 relowlpssretop 37347 elghomOLD 37874 iscrngo2 37984 refrelcoss3 38445 tendoset 40742 fnwe2lem2 43040 nadd1suc 43382 eliuniincex 45049 eliincex 45050 uzub 45381 liminflelimsuplem 45731 xlimbr 45783 subsaliuncl 46314 gricushgr 47824 isgrlim 47885 rrx2pnecoorneor 48565 rrx2linest 48592 |
Copyright terms: Public domain | W3C validator |