Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3340 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-ral 3070 |
This theorem is referenced by: ralrab2 3637 ralprgf 4633 ralprg 4635 raltpg 4639 ralxp 5747 f12dfv 7139 f13dfv 7140 ralrnmpo 7403 ovmptss 7917 ixpfi2 9078 dffi3 9151 dfoi 9231 ssttrcl 9434 fseqenlem1 9764 kmlem12 9901 fzprval 13299 fztpval 13300 hashbc 14146 2prm 16378 prmreclem2 16599 xpsfrnel 17254 xpsle 17271 gsumwspan 18466 sgrp2rid2 18546 psgnunilem3 19085 pmtrsn 19108 islinds2 21001 ply1coe 21448 cply1coe0bi 21452 m2cpminvid2lem 21884 basdif0 22084 ordtbaslem 22320 ptbasfi 22713 ptcnplem 22753 ptrescn 22771 flftg 23128 ust0 23352 minveclem1 24569 minveclem3b 24573 minveclem6 24579 iblcnlem1 24933 ellimc2 25022 ftalem3 26205 dchreq 26387 pntlem3 26738 istrkg2ld 26802 istrkg3ld 26803 tgcgr4 26873 elntg2 27334 lfuhgr1v0e 27602 cplgr0 27773 wlkp1lem8 28028 usgr2pthlem 28110 pthdlem1 28113 pthd 28116 crctcshwlkn0 28165 2wlkdlem4 28272 2wlkdlem5 28273 2pthdlem1 28274 2wlkdlem10 28279 rusgrnumwwlkl1 28312 0ewlk 28457 0wlk 28459 wlk2v2elem2 28499 3wlkdlem4 28505 3wlkdlem5 28506 3pthdlem1 28507 3wlkdlem10 28512 minvecolem1 29215 minvecolem5 29222 minvecolem6 29223 cdj3lem3b 30781 prsiga 32078 hfext 34464 filnetlem4 34549 relowlssretop 35513 relowlpssretop 35514 elghomOLD 36024 iscrngo2 36134 refrelcoss3 36560 tendoset 38752 fnwe2lem2 40856 eliuniincex 42612 eliincex 42613 uzub 42925 liminflelimsuplem 43270 xlimbr 43322 subsaliuncl 43851 isomushgr 45230 rrx2pnecoorneor 46013 rrx2linest 46040 |
Copyright terms: Public domain | W3C validator |