| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3289 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: ralrab2 3652 ralprgf 4644 ralprg 4646 raltpg 4648 ralxp 5780 f12dfv 7207 f13dfv 7208 ralrnmpo 7485 ovmptss 8023 ixpfi2 9234 dffi3 9315 dfoi 9397 ssttrcl 9605 fseqenlem1 9915 kmlem12 10053 fzprval 13485 fztpval 13486 hashbc 14360 2prm 16603 prmreclem2 16829 xpsfrnel 17466 xpsle 17483 s1chn 18526 chnub 18528 gsumwspan 18754 sgrp2rid2 18834 psgnunilem3 19408 pmtrsn 19431 islinds2 21750 ply1coe 22213 cply1coe0bi 22217 m2cpminvid2lem 22669 basdif0 22868 ordtbaslem 23103 ptbasfi 23496 ptcnplem 23536 ptrescn 23554 flftg 23911 ust0 24135 minveclem1 25351 minveclem3b 25355 minveclem6 25361 iblcnlem1 25716 ellimc2 25805 ftalem3 27012 dchreq 27196 pntlem3 27547 negsbdaylem 27998 precsexlem9 28153 istrkg2ld 28438 istrkg3ld 28439 tgcgr4 28509 elntg2 28963 lfuhgr1v0e 29232 cplgr0 29403 wlkp1lem8 29657 usgr2pthlem 29741 pthdlem1 29744 pthd 29747 crctcshwlkn0 29799 2wlkdlem4 29906 2wlkdlem5 29907 2pthdlem1 29908 2wlkdlem10 29913 rusgrnumwwlkl1 29949 0ewlk 30094 0wlk 30096 wlk2v2elem2 30136 3wlkdlem4 30142 3wlkdlem5 30143 3pthdlem1 30144 3wlkdlem10 30149 minvecolem1 30854 minvecolem5 30861 minvecolem6 30862 cdj3lem3b 32420 elrgspnsubrunlem2 33215 prsiga 34144 hfext 36227 filnetlem4 36425 relowlssretop 37407 relowlpssretop 37408 elghomOLD 37937 iscrngo2 38047 refrelcoss3 38575 tendoset 40868 fnwe2lem2 43154 nadd1suc 43495 eliuniincex 45216 eliincex 45217 uzub 45539 liminflelimsuplem 45883 xlimbr 45935 subsaliuncl 46466 gricushgr 48027 isgrlim 48092 rrx2pnecoorneor 48826 rrx2linest 48853 |
| Copyright terms: Public domain | W3C validator |