MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqi Structured version   Visualization version   GIF version

Theorem raleqi 3324
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
raleq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
raleqi (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem raleqi
StepHypRef Expression
1 raleq1i.1 . 2 𝐴 = 𝐵
2 raleq 3323 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
31, 2ax-mp 5 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-ral 3063  df-rex 3072
This theorem is referenced by:  ralrab2  3695  ralprgf  4697  ralprg  4699  raltpg  4703  ralxp  5842  f12dfv  7271  f13dfv  7272  ralrnmpo  7547  ovmptss  8079  ixpfi2  9350  dffi3  9426  dfoi  9506  ssttrcl  9710  fseqenlem1  10019  kmlem12  10156  fzprval  13562  fztpval  13563  hashbc  14412  2prm  16629  prmreclem2  16850  xpsfrnel  17508  xpsle  17525  gsumwspan  18727  sgrp2rid2  18807  psgnunilem3  19364  pmtrsn  19387  islinds2  21368  ply1coe  21820  cply1coe0bi  21824  m2cpminvid2lem  22256  basdif0  22456  ordtbaslem  22692  ptbasfi  23085  ptcnplem  23125  ptrescn  23143  flftg  23500  ust0  23724  minveclem1  24941  minveclem3b  24945  minveclem6  24951  iblcnlem1  25305  ellimc2  25394  ftalem3  26579  dchreq  26761  pntlem3  27112  negsbdaylem  27533  precsexlem9  27664  istrkg2ld  27742  istrkg3ld  27743  tgcgr4  27813  elntg2  28274  lfuhgr1v0e  28542  cplgr0  28713  wlkp1lem8  28968  usgr2pthlem  29051  pthdlem1  29054  pthd  29057  crctcshwlkn0  29106  2wlkdlem4  29213  2wlkdlem5  29214  2pthdlem1  29215  2wlkdlem10  29220  rusgrnumwwlkl1  29253  0ewlk  29398  0wlk  29400  wlk2v2elem2  29440  3wlkdlem4  29446  3wlkdlem5  29447  3pthdlem1  29448  3wlkdlem10  29453  minvecolem1  30158  minvecolem5  30165  minvecolem6  30166  cdj3lem3b  31724  prsiga  33160  hfext  35186  filnetlem4  35314  relowlssretop  36292  relowlpssretop  36293  elghomOLD  36803  iscrngo2  36913  refrelcoss3  37381  tendoset  39678  fnwe2lem2  41841  nadd1suc  42190  eliuniincex  43846  eliincex  43847  uzub  44189  liminflelimsuplem  44539  xlimbr  44591  subsaliuncl  45122  isomushgr  46542  rrx2pnecoorneor  47449  rrx2linest  47476
  Copyright terms: Public domain W3C validator