Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3354 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-cleq 2728 df-ral 3063 |
This theorem is referenced by: ralrab2 3640 ralprgf 4632 ralprg 4634 raltpg 4638 ralxp 5763 f12dfv 7177 f13dfv 7178 ralrnmpo 7444 ovmptss 7965 ixpfi2 9161 dffi3 9234 dfoi 9314 ssttrcl 9517 fseqenlem1 9826 kmlem12 9963 fzprval 13363 fztpval 13364 hashbc 14210 2prm 16442 prmreclem2 16663 xpsfrnel 17318 xpsle 17335 gsumwspan 18530 sgrp2rid2 18610 psgnunilem3 19149 pmtrsn 19172 islinds2 21065 ply1coe 21512 cply1coe0bi 21516 m2cpminvid2lem 21948 basdif0 22148 ordtbaslem 22384 ptbasfi 22777 ptcnplem 22817 ptrescn 22835 flftg 23192 ust0 23416 minveclem1 24633 minveclem3b 24637 minveclem6 24643 iblcnlem1 24997 ellimc2 25086 ftalem3 26269 dchreq 26451 pntlem3 26802 istrkg2ld 26866 istrkg3ld 26867 tgcgr4 26937 elntg2 27398 lfuhgr1v0e 27666 cplgr0 27837 wlkp1lem8 28093 usgr2pthlem 28176 pthdlem1 28179 pthd 28182 crctcshwlkn0 28231 2wlkdlem4 28338 2wlkdlem5 28339 2pthdlem1 28340 2wlkdlem10 28345 rusgrnumwwlkl1 28378 0ewlk 28523 0wlk 28525 wlk2v2elem2 28565 3wlkdlem4 28571 3wlkdlem5 28572 3pthdlem1 28573 3wlkdlem10 28578 minvecolem1 29281 minvecolem5 29288 minvecolem6 29289 cdj3lem3b 30847 prsiga 32144 hfext 34530 filnetlem4 34615 relowlssretop 35578 relowlpssretop 35579 elghomOLD 36089 iscrngo2 36199 refrelcoss3 36623 tendoset 38815 fnwe2lem2 40914 eliuniincex 42697 eliincex 42698 uzub 43019 liminflelimsuplem 43365 xlimbr 43417 subsaliuncl 43946 isomushgr 45336 rrx2pnecoorneor 46119 rrx2linest 46146 |
Copyright terms: Public domain | W3C validator |