| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3322 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: ralrab2 3703 ralprgf 4693 ralprg 4695 raltpg 4697 ralxp 5851 f12dfv 7294 f13dfv 7295 ralrnmpo 7573 ovmptss 8119 ixpfi2 9391 dffi3 9472 dfoi 9552 ssttrcl 9756 fseqenlem1 10065 kmlem12 10203 fzprval 13626 fztpval 13627 hashbc 14493 2prm 16730 prmreclem2 16956 xpsfrnel 17608 xpsle 17625 gsumwspan 18860 sgrp2rid2 18940 psgnunilem3 19515 pmtrsn 19538 islinds2 21834 ply1coe 22303 cply1coe0bi 22307 m2cpminvid2lem 22761 basdif0 22961 ordtbaslem 23197 ptbasfi 23590 ptcnplem 23630 ptrescn 23648 flftg 24005 ust0 24229 minveclem1 25459 minveclem3b 25463 minveclem6 25469 iblcnlem1 25824 ellimc2 25913 ftalem3 27119 dchreq 27303 pntlem3 27654 negsbdaylem 28089 precsexlem9 28240 istrkg2ld 28469 istrkg3ld 28470 tgcgr4 28540 elntg2 29001 lfuhgr1v0e 29272 cplgr0 29443 wlkp1lem8 29699 usgr2pthlem 29784 pthdlem1 29787 pthd 29790 crctcshwlkn0 29842 2wlkdlem4 29949 2wlkdlem5 29950 2pthdlem1 29951 2wlkdlem10 29956 rusgrnumwwlkl1 29989 0ewlk 30134 0wlk 30136 wlk2v2elem2 30176 3wlkdlem4 30182 3wlkdlem5 30183 3pthdlem1 30184 3wlkdlem10 30189 minvecolem1 30894 minvecolem5 30901 minvecolem6 30902 cdj3lem3b 32460 s1chn 33001 chnub 33003 elrgspnsubrunlem2 33253 prsiga 34133 hfext 36185 filnetlem4 36383 relowlssretop 37365 relowlpssretop 37366 elghomOLD 37895 iscrngo2 38005 refrelcoss3 38465 tendoset 40762 fnwe2lem2 43068 nadd1suc 43410 eliuniincex 45119 eliincex 45120 uzub 45447 liminflelimsuplem 45795 xlimbr 45847 subsaliuncl 46378 gricushgr 47891 isgrlim 47954 rrx2pnecoorneor 48641 rrx2linest 48668 |
| Copyright terms: Public domain | W3C validator |