Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3341 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-ral 3071 |
This theorem is referenced by: ralrab2 3638 ralprgf 4634 ralprg 4636 raltpg 4640 ralxp 5749 f12dfv 7142 f13dfv 7143 ralrnmpo 7407 ovmptss 7925 ixpfi2 9105 dffi3 9178 dfoi 9258 ssttrcl 9461 fseqenlem1 9791 kmlem12 9928 fzprval 13328 fztpval 13329 hashbc 14176 2prm 16408 prmreclem2 16629 xpsfrnel 17284 xpsle 17301 gsumwspan 18496 sgrp2rid2 18576 psgnunilem3 19115 pmtrsn 19138 islinds2 21031 ply1coe 21478 cply1coe0bi 21482 m2cpminvid2lem 21914 basdif0 22114 ordtbaslem 22350 ptbasfi 22743 ptcnplem 22783 ptrescn 22801 flftg 23158 ust0 23382 minveclem1 24599 minveclem3b 24603 minveclem6 24609 iblcnlem1 24963 ellimc2 25052 ftalem3 26235 dchreq 26417 pntlem3 26768 istrkg2ld 26832 istrkg3ld 26833 tgcgr4 26903 elntg2 27364 lfuhgr1v0e 27632 cplgr0 27803 wlkp1lem8 28058 usgr2pthlem 28140 pthdlem1 28143 pthd 28146 crctcshwlkn0 28195 2wlkdlem4 28302 2wlkdlem5 28303 2pthdlem1 28304 2wlkdlem10 28309 rusgrnumwwlkl1 28342 0ewlk 28487 0wlk 28489 wlk2v2elem2 28529 3wlkdlem4 28535 3wlkdlem5 28536 3pthdlem1 28537 3wlkdlem10 28542 minvecolem1 29245 minvecolem5 29252 minvecolem6 29253 cdj3lem3b 30811 prsiga 32108 hfext 34494 filnetlem4 34579 relowlssretop 35543 relowlpssretop 35544 elghomOLD 36054 iscrngo2 36164 refrelcoss3 36590 tendoset 38782 fnwe2lem2 40885 eliuniincex 42641 eliincex 42642 uzub 42953 liminflelimsuplem 43298 xlimbr 43350 subsaliuncl 43879 isomushgr 45257 rrx2pnecoorneor 46040 rrx2linest 46067 |
Copyright terms: Public domain | W3C validator |