![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3331 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: ralrab2 3720 ralprgf 4717 ralprg 4719 raltpg 4723 ralxp 5866 f12dfv 7309 f13dfv 7310 ralrnmpo 7589 ovmptss 8134 ixpfi2 9420 dffi3 9500 dfoi 9580 ssttrcl 9784 fseqenlem1 10093 kmlem12 10231 fzprval 13645 fztpval 13646 hashbc 14502 2prm 16739 prmreclem2 16964 xpsfrnel 17622 xpsle 17639 gsumwspan 18881 sgrp2rid2 18961 psgnunilem3 19538 pmtrsn 19561 islinds2 21856 ply1coe 22323 cply1coe0bi 22327 m2cpminvid2lem 22781 basdif0 22981 ordtbaslem 23217 ptbasfi 23610 ptcnplem 23650 ptrescn 23668 flftg 24025 ust0 24249 minveclem1 25477 minveclem3b 25481 minveclem6 25487 iblcnlem1 25843 ellimc2 25932 ftalem3 27136 dchreq 27320 pntlem3 27671 negsbdaylem 28106 precsexlem9 28257 istrkg2ld 28486 istrkg3ld 28487 tgcgr4 28557 elntg2 29018 lfuhgr1v0e 29289 cplgr0 29460 wlkp1lem8 29716 usgr2pthlem 29799 pthdlem1 29802 pthd 29805 crctcshwlkn0 29854 2wlkdlem4 29961 2wlkdlem5 29962 2pthdlem1 29963 2wlkdlem10 29968 rusgrnumwwlkl1 30001 0ewlk 30146 0wlk 30148 wlk2v2elem2 30188 3wlkdlem4 30194 3wlkdlem5 30195 3pthdlem1 30196 3wlkdlem10 30201 minvecolem1 30906 minvecolem5 30913 minvecolem6 30914 cdj3lem3b 32472 chnub 32984 prsiga 34095 hfext 36147 filnetlem4 36347 relowlssretop 37329 relowlpssretop 37330 elghomOLD 37847 iscrngo2 37957 refrelcoss3 38419 tendoset 40716 fnwe2lem2 43008 nadd1suc 43354 eliuniincex 45011 eliincex 45012 uzub 45346 liminflelimsuplem 45696 xlimbr 45748 subsaliuncl 46279 gricushgr 47770 isgrlim 47806 rrx2pnecoorneor 48449 rrx2linest 48476 |
Copyright terms: Public domain | W3C validator |