| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3286 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: ralrab2 3658 ralprgf 4646 ralprg 4648 raltpg 4650 ralxp 5784 f12dfv 7210 f13dfv 7211 ralrnmpo 7488 ovmptss 8026 ixpfi2 9240 dffi3 9321 dfoi 9403 ssttrcl 9611 fseqenlem1 9918 kmlem12 10056 fzprval 13488 fztpval 13489 hashbc 14360 2prm 16603 prmreclem2 16829 xpsfrnel 17466 xpsle 17483 gsumwspan 18720 sgrp2rid2 18800 psgnunilem3 19375 pmtrsn 19398 islinds2 21720 ply1coe 22183 cply1coe0bi 22187 m2cpminvid2lem 22639 basdif0 22838 ordtbaslem 23073 ptbasfi 23466 ptcnplem 23506 ptrescn 23524 flftg 23881 ust0 24105 minveclem1 25322 minveclem3b 25326 minveclem6 25332 iblcnlem1 25687 ellimc2 25776 ftalem3 26983 dchreq 27167 pntlem3 27518 negsbdaylem 27967 precsexlem9 28122 istrkg2ld 28405 istrkg3ld 28406 tgcgr4 28476 elntg2 28930 lfuhgr1v0e 29199 cplgr0 29370 wlkp1lem8 29624 usgr2pthlem 29708 pthdlem1 29711 pthd 29714 crctcshwlkn0 29766 2wlkdlem4 29873 2wlkdlem5 29874 2pthdlem1 29875 2wlkdlem10 29880 rusgrnumwwlkl1 29913 0ewlk 30058 0wlk 30060 wlk2v2elem2 30100 3wlkdlem4 30106 3wlkdlem5 30107 3pthdlem1 30108 3wlkdlem10 30113 minvecolem1 30818 minvecolem5 30825 minvecolem6 30826 cdj3lem3b 32384 s1chn 32953 chnub 32955 elrgspnsubrunlem2 33189 prsiga 34104 hfext 36167 filnetlem4 36365 relowlssretop 37347 relowlpssretop 37348 elghomOLD 37877 iscrngo2 37987 refrelcoss3 38450 tendoset 40748 fnwe2lem2 43034 nadd1suc 43375 eliuniincex 45097 eliincex 45098 uzub 45420 liminflelimsuplem 45766 xlimbr 45818 subsaliuncl 46349 gricushgr 47911 isgrlim 47976 rrx2pnecoorneor 48710 rrx2linest 48737 |
| Copyright terms: Public domain | W3C validator |