| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3293 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: ralrab2 3666 ralprgf 4654 ralprg 4656 raltpg 4658 ralxp 5795 f12dfv 7230 f13dfv 7231 ralrnmpo 7508 ovmptss 8049 ixpfi2 9277 dffi3 9358 dfoi 9440 ssttrcl 9644 fseqenlem1 9953 kmlem12 10091 fzprval 13522 fztpval 13523 hashbc 14394 2prm 16638 prmreclem2 16864 xpsfrnel 17501 xpsle 17518 gsumwspan 18755 sgrp2rid2 18835 psgnunilem3 19410 pmtrsn 19433 islinds2 21755 ply1coe 22218 cply1coe0bi 22222 m2cpminvid2lem 22674 basdif0 22873 ordtbaslem 23108 ptbasfi 23501 ptcnplem 23541 ptrescn 23559 flftg 23916 ust0 24140 minveclem1 25357 minveclem3b 25361 minveclem6 25367 iblcnlem1 25722 ellimc2 25811 ftalem3 27018 dchreq 27202 pntlem3 27553 negsbdaylem 28002 precsexlem9 28157 istrkg2ld 28440 istrkg3ld 28441 tgcgr4 28511 elntg2 28965 lfuhgr1v0e 29234 cplgr0 29405 wlkp1lem8 29659 usgr2pthlem 29743 pthdlem1 29746 pthd 29749 crctcshwlkn0 29801 2wlkdlem4 29908 2wlkdlem5 29909 2pthdlem1 29910 2wlkdlem10 29915 rusgrnumwwlkl1 29948 0ewlk 30093 0wlk 30095 wlk2v2elem2 30135 3wlkdlem4 30141 3wlkdlem5 30142 3pthdlem1 30143 3wlkdlem10 30148 minvecolem1 30853 minvecolem5 30860 minvecolem6 30861 cdj3lem3b 32419 s1chn 32982 chnub 32984 elrgspnsubrunlem2 33215 prsiga 34114 hfext 36164 filnetlem4 36362 relowlssretop 37344 relowlpssretop 37345 elghomOLD 37874 iscrngo2 37984 refrelcoss3 38447 tendoset 40746 fnwe2lem2 43033 nadd1suc 43374 eliuniincex 45096 eliincex 45097 uzub 45420 liminflelimsuplem 45766 xlimbr 45818 subsaliuncl 46349 gricushgr 47910 isgrlim 47974 rrx2pnecoorneor 48697 rrx2linest 48724 |
| Copyright terms: Public domain | W3C validator |