| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3306 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: ralrab2 3686 ralprgf 4675 ralprg 4677 raltpg 4679 ralxp 5826 f12dfv 7271 f13dfv 7272 ralrnmpo 7551 ovmptss 8097 ixpfi2 9367 dffi3 9448 dfoi 9530 ssttrcl 9734 fseqenlem1 10043 kmlem12 10181 fzprval 13607 fztpval 13608 hashbc 14476 2prm 16716 prmreclem2 16942 xpsfrnel 17581 xpsle 17598 gsumwspan 18829 sgrp2rid2 18909 psgnunilem3 19482 pmtrsn 19505 islinds2 21778 ply1coe 22241 cply1coe0bi 22245 m2cpminvid2lem 22697 basdif0 22896 ordtbaslem 23131 ptbasfi 23524 ptcnplem 23564 ptrescn 23582 flftg 23939 ust0 24163 minveclem1 25381 minveclem3b 25385 minveclem6 25391 iblcnlem1 25746 ellimc2 25835 ftalem3 27042 dchreq 27226 pntlem3 27577 negsbdaylem 28019 precsexlem9 28174 istrkg2ld 28444 istrkg3ld 28445 tgcgr4 28515 elntg2 28969 lfuhgr1v0e 29238 cplgr0 29409 wlkp1lem8 29665 usgr2pthlem 29750 pthdlem1 29753 pthd 29756 crctcshwlkn0 29808 2wlkdlem4 29915 2wlkdlem5 29916 2pthdlem1 29917 2wlkdlem10 29922 rusgrnumwwlkl1 29955 0ewlk 30100 0wlk 30102 wlk2v2elem2 30142 3wlkdlem4 30148 3wlkdlem5 30149 3pthdlem1 30150 3wlkdlem10 30155 minvecolem1 30860 minvecolem5 30867 minvecolem6 30868 cdj3lem3b 32426 s1chn 32995 chnub 32997 elrgspnsubrunlem2 33248 prsiga 34167 hfext 36206 filnetlem4 36404 relowlssretop 37386 relowlpssretop 37387 elghomOLD 37916 iscrngo2 38026 refrelcoss3 38486 tendoset 40783 fnwe2lem2 43050 nadd1suc 43391 eliuniincex 45113 eliincex 45114 uzub 45438 liminflelimsuplem 45784 xlimbr 45836 subsaliuncl 46367 gricushgr 47910 isgrlim 47974 rrx2pnecoorneor 48675 rrx2linest 48702 |
| Copyright terms: Public domain | W3C validator |