| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | raleq 3296 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: ralrab2 3669 ralprgf 4658 ralprg 4660 raltpg 4662 ralxp 5805 f12dfv 7248 f13dfv 7249 ralrnmpo 7528 ovmptss 8072 ixpfi2 9301 dffi3 9382 dfoi 9464 ssttrcl 9668 fseqenlem1 9977 kmlem12 10115 fzprval 13546 fztpval 13547 hashbc 14418 2prm 16662 prmreclem2 16888 xpsfrnel 17525 xpsle 17542 gsumwspan 18773 sgrp2rid2 18853 psgnunilem3 19426 pmtrsn 19449 islinds2 21722 ply1coe 22185 cply1coe0bi 22189 m2cpminvid2lem 22641 basdif0 22840 ordtbaslem 23075 ptbasfi 23468 ptcnplem 23508 ptrescn 23526 flftg 23883 ust0 24107 minveclem1 25324 minveclem3b 25328 minveclem6 25334 iblcnlem1 25689 ellimc2 25778 ftalem3 26985 dchreq 27169 pntlem3 27520 negsbdaylem 27962 precsexlem9 28117 istrkg2ld 28387 istrkg3ld 28388 tgcgr4 28458 elntg2 28912 lfuhgr1v0e 29181 cplgr0 29352 wlkp1lem8 29608 usgr2pthlem 29693 pthdlem1 29696 pthd 29699 crctcshwlkn0 29751 2wlkdlem4 29858 2wlkdlem5 29859 2pthdlem1 29860 2wlkdlem10 29865 rusgrnumwwlkl1 29898 0ewlk 30043 0wlk 30045 wlk2v2elem2 30085 3wlkdlem4 30091 3wlkdlem5 30092 3pthdlem1 30093 3wlkdlem10 30098 minvecolem1 30803 minvecolem5 30810 minvecolem6 30811 cdj3lem3b 32369 s1chn 32936 chnub 32938 elrgspnsubrunlem2 33199 prsiga 34121 hfext 36171 filnetlem4 36369 relowlssretop 37351 relowlpssretop 37352 elghomOLD 37881 iscrngo2 37991 refrelcoss3 38454 tendoset 40753 fnwe2lem2 43040 nadd1suc 43381 eliuniincex 45103 eliincex 45104 uzub 45427 liminflelimsuplem 45773 xlimbr 45825 subsaliuncl 46356 gricushgr 47917 isgrlim 47981 rrx2pnecoorneor 48704 rrx2linest 48731 |
| Copyright terms: Public domain | W3C validator |