Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd2 Structured version   Visualization version   GIF version

Theorem sstotbnd2 35932
Description: Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑑,𝑣,𝑥

Proof of Theorem sstotbnd2
Dummy variables 𝑐 𝑓 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . . 5 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
2 metres2 23516 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
31, 2eqeltrid 2843 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑁 ∈ (Met‘𝑌))
4 istotbnd3 35929 . . . . 5 (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌))
54baib 536 . . . 4 (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌))
63, 5syl 17 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌))
7 simpllr 773 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌𝑋)
87sspwd 4548 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋)
98ssrind 4169 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝒫 𝑌 ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
10 simprl 768 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑌 ∩ Fin))
119, 10sseldd 3922 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑋 ∩ Fin))
12 simprr 770 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)
13 metxmet 23487 . . . . . . . . . . . . . 14 (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋))
1413ad4antr 729 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑀 ∈ (∞Met‘𝑋))
15 elfpw 9121 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ↔ (𝑣𝑌𝑣 ∈ Fin))
1615simplbi 498 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 𝑌 ∩ Fin) → 𝑣𝑌)
1716adantl 482 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → 𝑣𝑌)
1817sselda 3921 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑥𝑌)
19 simp-4r 781 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑌𝑋)
20 sseqin2 4149 . . . . . . . . . . . . . . 15 (𝑌𝑋 ↔ (𝑋𝑌) = 𝑌)
2119, 20sylib 217 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → (𝑋𝑌) = 𝑌)
2218, 21eleqtrrd 2842 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑋𝑌))
23 simpllr 773 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑑 ∈ ℝ+)
2423rpxrd 12773 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → 𝑑 ∈ ℝ*)
251blres 23584 . . . . . . . . . . . . 13 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝑋𝑌) ∧ 𝑑 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌))
2614, 22, 24, 25syl3anc 1370 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌))
27 inss1 4162 . . . . . . . . . . . 12 ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ⊆ (𝑥(ball‘𝑀)𝑑)
2826, 27eqsstrdi 3975 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥𝑣) → (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑))
2928ralrimiva 3103 . . . . . . . . . 10 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → ∀𝑥𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑))
30 ss2iun 4942 . . . . . . . . . 10 (∀𝑥𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
3129, 30syl 17 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
3231adantrr 714 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
3312, 32eqsstrrd 3960 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
3411, 33jca 512 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3534ex 413 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))))
3635reximdv2 3199 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑑 ∈ ℝ+) → (∃𝑣 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3736ralimdva 3108 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
386, 37sylbid 239 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
39 simpr 485 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈ ℝ+)
4039rphalfcld 12784 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) → (𝑐 / 2) ∈ ℝ+)
41 oveq2 7283 . . . . . . . . . 10 (𝑑 = (𝑐 / 2) → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)(𝑐 / 2)))
4241iuneq2d 4953 . . . . . . . . 9 (𝑑 = (𝑐 / 2) → 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))
4342sseq2d 3953 . . . . . . . 8 (𝑑 = (𝑐 / 2) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))))
4443rexbidv 3226 . . . . . . 7 (𝑑 = (𝑐 / 2) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))))
4544rspcv 3557 . . . . . 6 ((𝑐 / 2) ∈ ℝ+ → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))))
4640, 45syl 17 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))))
47 elfpw 9121 . . . . . . . . . . 11 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣𝑋𝑣 ∈ Fin))
4847simprbi 497 . . . . . . . . . 10 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin)
4948ad2antrl 725 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣 ∈ Fin)
50 ssrab2 4013 . . . . . . . . 9 {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣
51 ssfi 8956 . . . . . . . . 9 ((𝑣 ∈ Fin ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin)
5249, 50, 51sylancl 586 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin)
53 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥(ball‘𝑀)(𝑐 / 2)) = (𝑦(ball‘𝑀)(𝑐 / 2)))
5453ineq1d 4145 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌))
55 incom 4135 . . . . . . . . . . . . . . 15 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2)))
5654, 55eqtrdi 2794 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))))
57 dfin5 3895 . . . . . . . . . . . . . 14 (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))) = {𝑧𝑌𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))}
5856, 57eqtrdi 2794 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = {𝑧𝑌𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))})
5958neeq1d 3003 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ {𝑧𝑌𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅))
60 rabn0 4319 . . . . . . . . . . . 12 ({𝑧𝑌𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅ ↔ ∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))
6159, 60bitrdi 287 . . . . . . . . . . 11 (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
6261elrab 3624 . . . . . . . . . 10 (𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ↔ (𝑦𝑣 ∧ ∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
6362simprbi 497 . . . . . . . . 9 (𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → ∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))
6463rgen 3074 . . . . . . . 8 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))
65 eleq1 2826 . . . . . . . . 9 (𝑧 = (𝑓𝑦) → (𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
6665ac6sfi 9058 . . . . . . . 8 (({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑓(𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
6752, 64, 66sylancl 586 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑓(𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
68 fdm 6609 . . . . . . . . . . . . . 14 (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → dom 𝑓 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅})
6968ad2antrl 725 . . . . . . . . . . . . 13 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅})
7069, 50eqsstrdi 3975 . . . . . . . . . . . 12 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓𝑣)
71 simprl 768 . . . . . . . . . . . . 13 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌)
7269feq2d 6586 . . . . . . . . . . . . 13 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓:dom 𝑓𝑌𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌))
7371, 72mpbird 256 . . . . . . . . . . . 12 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:dom 𝑓𝑌)
74 simprr 770 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))
75 ffn 6600 . . . . . . . . . . . . . . . . . 18 (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌𝑓 Fn {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅})
76 elpreima 6935 . . . . . . . . . . . . . . . . . 18 (𝑓 Fn {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))))
7775, 76syl 17 . . . . . . . . . . . . . . . . 17 (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))))
7877baibd 540 . . . . . . . . . . . . . . . 16 ((𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
7978ralbidva 3111 . . . . . . . . . . . . . . 15 (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
8079ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))
8174, 80mpbird 256 . . . . . . . . . . . . 13 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))
82 id 22 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥𝑦 = 𝑥)
83 oveq1 7282 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)(𝑐 / 2)) = (𝑥(ball‘𝑀)(𝑐 / 2)))
8483imaeq2d 5969 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) = (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))
8582, 84eleq12d 2833 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))
8685ralrab2 3635 . . . . . . . . . . . . 13 (∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))
8781, 86sylib 217 . . . . . . . . . . . 12 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))
8870, 73, 873jca 1127 . . . . . . . . . . 11 ((𝑣 ∈ Fin ∧ (𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))))
8988ex 413 . . . . . . . . . 10 (𝑣 ∈ Fin → ((𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))))
9049, 89syl 17 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))))
91 simpr2 1194 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓:dom 𝑓𝑌)
9291frnd 6608 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓𝑌)
9391ffnd 6601 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 Fn dom 𝑓)
9449adantr 481 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣 ∈ Fin)
95 simpr1 1193 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓𝑣)
96 ssfi 8956 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Fin ∧ dom 𝑓𝑣) → dom 𝑓 ∈ Fin)
9794, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ∈ Fin)
98 fnfi 8964 . . . . . . . . . . . . . 14 ((𝑓 Fn dom 𝑓 ∧ dom 𝑓 ∈ Fin) → 𝑓 ∈ Fin)
9993, 97, 98syl2anc 584 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 ∈ Fin)
100 rnfi 9102 . . . . . . . . . . . . 13 (𝑓 ∈ Fin → ran 𝑓 ∈ Fin)
10199, 100syl 17 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ Fin)
102 elfpw 9121 . . . . . . . . . . . 12 (ran 𝑓 ∈ (𝒫 𝑌 ∩ Fin) ↔ (ran 𝑓𝑌 ∧ ran 𝑓 ∈ Fin))
10392, 101, 102sylanbrc 583 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ (𝒫 𝑌 ∩ Fin))
104 oveq1 7282 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥(ball‘𝑁)𝑐) = (𝑧(ball‘𝑁)𝑐))
105104cbviunv 4970 . . . . . . . . . . . 12 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)
1063ad4antr 729 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (Met‘𝑌))
107 metxmet 23487 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (Met‘𝑌) → 𝑁 ∈ (∞Met‘𝑌))
108106, 107syl 17 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (∞Met‘𝑌))
10992sselda 3921 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧𝑌)
110 rpxr 12739 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ*)
111110ad4antlr 730 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑐 ∈ ℝ*)
112 blssm 23571 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑧𝑌𝑐 ∈ ℝ*) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌)
113108, 109, 111, 112syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌)
114113ralrimiva 3103 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌)
115 iunss 4975 . . . . . . . . . . . . . 14 ( 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌 ↔ ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌)
116114, 115sylibr 233 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌)
117 iunin1 5001 . . . . . . . . . . . . . . 15 𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ( 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌)
118 simplrr 775 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))
11953cbviunv 4970 . . . . . . . . . . . . . . . . 17 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) = 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2))
120118, 119sseqtrdi 3971 . . . . . . . . . . . . . . . 16 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)))
121 sseqin2 4149 . . . . . . . . . . . . . . . 16 (𝑌 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ ( 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌)
122120, 121sylib 217 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ( 𝑦𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌)
123117, 122eqtrid 2790 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌)
124 0ss 4330 . . . . . . . . . . . . . . . . . . 19 ∅ ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)
125 sseq1 3946 . . . . . . . . . . . . . . . . . . 19 (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∅ ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)))
126124, 125mpbiri 257 . . . . . . . . . . . . . . . . . 18 (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
127126a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)))
128 simpr3 1195 . . . . . . . . . . . . . . . . . . 19 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))
12954neeq1d 3003 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅))
130 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦𝑥 = 𝑦)
13153imaeq2d 5969 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) = (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))
132130, 131eleq12d 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) ↔ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))))
133129, 132imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ↔ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))))
134133rspccva 3560 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ 𝑦𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))))
135128, 134sylan 580 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))))
13613ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑀 ∈ (∞Met‘𝑋))
137 cnvimass 5989 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ dom 𝑓
13847simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣𝑋)
139138ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣𝑋)
140139adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣𝑋)
14195, 140sstrd 3931 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓𝑋)
142137, 141sstrid 3932 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ 𝑋)
143142sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑦𝑋)
144 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ+)
145144rpred 12772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ)
146 elpreima 6935 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 Fn dom 𝑓 → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ dom 𝑓 ∧ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))))
147146simplbda 500 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 Fn dom 𝑓𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))
14893, 147sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))
149 blhalf 23558 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋) ∧ (𝑐 ∈ ℝ ∧ (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓𝑦)(ball‘𝑀)𝑐))
150136, 143, 145, 148, 149syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓𝑦)(ball‘𝑀)𝑐))
151150ssrind 4169 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ (((𝑓𝑦)(ball‘𝑀)𝑐) ∩ 𝑌))
152137sseli 3917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → 𝑦 ∈ dom 𝑓)
153 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:dom 𝑓𝑌𝑦 ∈ dom 𝑓) → (𝑓𝑦) ∈ 𝑌)
15491, 152, 153syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓𝑦) ∈ 𝑌)
155 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑌𝑋)
156155, 20sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑋𝑌) = 𝑌)
157154, 156eleqtrrd 2842 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓𝑦) ∈ (𝑋𝑌))
158110ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ*)
1591blres 23584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑓𝑦) ∈ (𝑋𝑌) ∧ 𝑐 ∈ ℝ*) → ((𝑓𝑦)(ball‘𝑁)𝑐) = (((𝑓𝑦)(ball‘𝑀)𝑐) ∩ 𝑌))
160136, 157, 158, 159syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓𝑦)(ball‘𝑁)𝑐) = (((𝑓𝑦)(ball‘𝑀)𝑐) ∩ 𝑌))
161151, 160sseqtrrd 3962 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ((𝑓𝑦)(ball‘𝑁)𝑐))
162 fnfvelrn 6958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓 Fn dom 𝑓𝑦 ∈ dom 𝑓) → (𝑓𝑦) ∈ ran 𝑓)
16393, 152, 162syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓𝑦) ∈ ran 𝑓)
164 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = (𝑓𝑦) → (𝑧(ball‘𝑁)𝑐) = ((𝑓𝑦)(ball‘𝑁)𝑐))
165164ssiun2s 4978 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑦) ∈ ran 𝑓 → ((𝑓𝑦)(ball‘𝑁)𝑐) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
166163, 165syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓𝑦)(ball‘𝑁)𝑐) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
167161, 166sstrd 3931 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
168167adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) ∧ 𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
169168ex 413 . . . . . . . . . . . . . . . . . 18 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) → (𝑦 ∈ (𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)))
170135, 169syld 47 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)))
171127, 170pm2.61dne 3031 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦𝑣) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
172171ralrimiva 3103 . . . . . . . . . . . . . . 15 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
173 iunss 4975 . . . . . . . . . . . . . . 15 ( 𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∀𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
174172, 173sylibr 233 . . . . . . . . . . . . . 14 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑦𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
175123, 174eqsstrrd 3960 . . . . . . . . . . . . 13 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))
176116, 175eqssd 3938 . . . . . . . . . . . 12 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) = 𝑌)
177105, 176eqtrid 2790 . . . . . . . . . . 11 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌)
178 iuneq1 4940 . . . . . . . . . . . . 13 (𝑤 = ran 𝑓 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐))
179178eqeq1d 2740 . . . . . . . . . . . 12 (𝑤 = ran 𝑓 → ( 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌))
180179rspcev 3561 . . . . . . . . . . 11 ((ran 𝑓 ∈ (𝒫 𝑌 ∩ Fin) ∧ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)
181103, 177, 180syl2anc 584 . . . . . . . . . 10 (((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)
182181ex 413 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((dom 𝑓𝑣𝑓:dom 𝑓𝑌 ∧ ∀𝑥𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
18390, 182syld 47 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
184183exlimdv 1936 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → (∃𝑓(𝑓:{𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
18567, 184mpd 15 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)
186185rexlimdvaa 3214 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
18746, 186syld 47 . . . 4 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑐 ∈ ℝ+) → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
188187ralrimdva 3106 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑐 ∈ ℝ+𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
189 istotbnd3 35929 . . . . 5 (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
190189baib 536 . . . 4 (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
1913, 190syl 17 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+𝑤 ∈ (𝒫 𝑌 ∩ Fin) 𝑥𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌))
192188, 191sylibrd 258 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑁 ∈ (TotBnd‘𝑌)))
19338, 192impbid 211 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   ciun 4924   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cr 10870  *cxr 11008   / cdiv 11632  2c2 12028  +crp 12730  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584  TotBndctotbnd 35924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-totbnd 35926
This theorem is referenced by:  sstotbnd  35933  sstotbnd3  35934
  Copyright terms: Public domain W3C validator