| Step | Hyp | Ref
| Expression |
| 1 | | sstotbnd.2 |
. . . . 5
⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) |
| 2 | | metres2 24373 |
. . . . 5
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
| 3 | 1, 2 | eqeltrid 2845 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑁 ∈ (Met‘𝑌)) |
| 4 | | istotbnd3 37778 |
. . . . 5
⊢ (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
| 5 | 4 | baib 535 |
. . . 4
⊢ (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
| 6 | 3, 5 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
| 7 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌 ⊆ 𝑋) |
| 8 | 7 | sspwd 4613 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 9 | 8 | ssrind 4244 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝒫 𝑌 ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)) |
| 10 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) |
| 11 | 9, 10 | sseldd 3984 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) |
| 12 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌) |
| 13 | | metxmet 24344 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
| 14 | 13 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑀 ∈ (∞Met‘𝑋)) |
| 15 | | elfpw 9394 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ↔ (𝑣 ⊆ 𝑌 ∧ 𝑣 ∈ Fin)) |
| 16 | 15 | simplbi 497 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) → 𝑣 ⊆ 𝑌) |
| 17 | 16 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → 𝑣 ⊆ 𝑌) |
| 18 | 17 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ 𝑌) |
| 19 | | simp-4r 784 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑌 ⊆ 𝑋) |
| 20 | | sseqin2 4223 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑌) = 𝑌) |
| 21 | 19, 20 | sylib 218 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑋 ∩ 𝑌) = 𝑌) |
| 22 | 18, 21 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ (𝑋 ∩ 𝑌)) |
| 23 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑑 ∈ ℝ+) |
| 24 | 23 | rpxrd 13078 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑑 ∈ ℝ*) |
| 25 | 1 | blres 24441 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝑋 ∩ 𝑌) ∧ 𝑑 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌)) |
| 26 | 14, 22, 24, 25 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌)) |
| 27 | | inss1 4237 |
. . . . . . . . . . . 12
⊢ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ⊆ (𝑥(ball‘𝑀)𝑑) |
| 28 | 26, 27 | eqsstrdi 4028 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑)) |
| 29 | 28 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) →
∀𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑)) |
| 30 | | ss2iun 5010 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑) → ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
| 32 | 31 | adantrr 717 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
| 33 | 12, 32 | eqsstrrd 4019 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
| 34 | 11, 33 | jca 511 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
| 35 | 34 | ex 412 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)))) |
| 36 | 35 | reximdv2 3164 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) →
(∃𝑣 ∈ (𝒫
𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
| 37 | 36 | ralimdva 3167 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
| 38 | 6, 37 | sylbid 240 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
| 39 | | simpr 484 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈
ℝ+) |
| 40 | 39 | rphalfcld 13089 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) → (𝑐 / 2) ∈
ℝ+) |
| 41 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑐 / 2) → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)(𝑐 / 2))) |
| 42 | 41 | iuneq2d 5022 |
. . . . . . . . 9
⊢ (𝑑 = (𝑐 / 2) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))) |
| 43 | 42 | sseq2d 4016 |
. . . . . . . 8
⊢ (𝑑 = (𝑐 / 2) → (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
| 44 | 43 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑑 = (𝑐 / 2) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
| 45 | 44 | rspcv 3618 |
. . . . . 6
⊢ ((𝑐 / 2) ∈ ℝ+
→ (∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
| 46 | 40, 45 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
| 47 | | elfpw 9394 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin)) |
| 48 | 47 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin) |
| 49 | 48 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣 ∈ Fin) |
| 50 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣 |
| 51 | | ssfi 9213 |
. . . . . . . . 9
⊢ ((𝑣 ∈ Fin ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin) |
| 52 | 49, 50, 51 | sylancl 586 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin) |
| 53 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑥(ball‘𝑀)(𝑐 / 2)) = (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 54 | 53 | ineq1d 4219 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌)) |
| 55 | | incom 4209 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 56 | 54, 55 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 57 | | dfin5 3959 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))) = {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} |
| 58 | 56, 57 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))}) |
| 59 | 58 | neeq1d 3000 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅)) |
| 60 | | rabn0 4389 |
. . . . . . . . . . . 12
⊢ ({𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅ ↔ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 61 | 59, 60 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 62 | 61 | elrab 3692 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ↔ (𝑦 ∈ 𝑣 ∧ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 63 | 62 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 64 | 63 | rgen 3063 |
. . . . . . . 8
⊢
∀𝑦 ∈
{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)) |
| 65 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑧 = (𝑓‘𝑦) → (𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 66 | 65 | ac6sfi 9320 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin ∧
∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 67 | 52, 64, 66 | sylancl 586 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 68 | | fdm 6745 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → dom 𝑓 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
| 69 | 68 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
| 70 | 69, 50 | eqsstrdi 4028 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓 ⊆ 𝑣) |
| 71 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌) |
| 72 | 69 | feq2d 6722 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓:dom 𝑓⟶𝑌 ↔ 𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌)) |
| 73 | 71, 72 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:dom 𝑓⟶𝑌) |
| 74 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 75 | | ffn 6736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → 𝑓 Fn {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
| 76 | | elpreima 7078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 78 | 77 | baibd 539 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 79 | 78 | ralbidva 3176 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 80 | 79 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 81 | 74, 80 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 82 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
| 83 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑦(ball‘𝑀)(𝑐 / 2)) = (𝑥(ball‘𝑀)(𝑐 / 2))) |
| 84 | 83 | imaeq2d 6078 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) = (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) |
| 85 | 82, 84 | eleq12d 2835 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
| 86 | 85 | ralrab2 3704 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
| 87 | 81, 86 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
| 88 | 70, 73, 87 | 3jca 1129 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) |
| 89 | 88 | ex 412 |
. . . . . . . . . 10
⊢ (𝑣 ∈ Fin → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))))) |
| 90 | 49, 89 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))))) |
| 91 | | simpr2 1196 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓:dom 𝑓⟶𝑌) |
| 92 | 91 | frnd 6744 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ⊆ 𝑌) |
| 93 | 91 | ffnd 6737 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 Fn dom 𝑓) |
| 94 | 49 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣 ∈ Fin) |
| 95 | | simpr1 1195 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ⊆ 𝑣) |
| 96 | | ssfi 9213 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Fin ∧ dom 𝑓 ⊆ 𝑣) → dom 𝑓 ∈ Fin) |
| 97 | 94, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ∈ Fin) |
| 98 | | fnfi 9218 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn dom 𝑓 ∧ dom 𝑓 ∈ Fin) → 𝑓 ∈ Fin) |
| 99 | 93, 97, 98 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 ∈ Fin) |
| 100 | | rnfi 9380 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ Fin → ran 𝑓 ∈ Fin) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ Fin) |
| 102 | | elfpw 9394 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑌 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑌 ∧ ran 𝑓 ∈ Fin)) |
| 103 | 92, 101, 102 | sylanbrc 583 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ (𝒫 𝑌 ∩ Fin)) |
| 104 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥(ball‘𝑁)𝑐) = (𝑧(ball‘𝑁)𝑐)) |
| 105 | 104 | cbviunv 5040 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) |
| 106 | 3 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (Met‘𝑌)) |
| 107 | | metxmet 24344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ (Met‘𝑌) → 𝑁 ∈ (∞Met‘𝑌)) |
| 108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (∞Met‘𝑌)) |
| 109 | 92 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝑌) |
| 110 | | rpxr 13044 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ ℝ+
→ 𝑐 ∈
ℝ*) |
| 111 | 110 | ad4antlr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑐 ∈ ℝ*) |
| 112 | | blssm 24428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑧 ∈ 𝑌 ∧ 𝑐 ∈ ℝ*) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
| 113 | 108, 109,
111, 112 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
| 114 | 113 | ralrimiva 3146 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
| 115 | | iunss 5045 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌 ↔ ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
| 116 | 114, 115 | sylibr 234 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
| 117 | | iunin1 5072 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) |
| 118 | | simplrr 778 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))) |
| 119 | 53 | cbviunv 5040 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) = ∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) |
| 120 | 118, 119 | sseqtrdi 4024 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 121 | | sseqin2 4223 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ⊆ ∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ (∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
| 122 | 120, 121 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → (∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
| 123 | 117, 122 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
| 124 | | 0ss 4400 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∅
⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) |
| 125 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∅ ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
| 126 | 124, 125 | mpbiri 258 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 127 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
| 128 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
| 129 | 54 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅)) |
| 130 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 131 | 53 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) = (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
| 132 | 130, 131 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) ↔ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 133 | 129, 132 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → ((((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ↔ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))))) |
| 134 | 133 | rspccva 3621 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑥 ∈
𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 135 | 128, 134 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 136 | 13 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑀 ∈ (∞Met‘𝑋)) |
| 137 | | cnvimass 6100 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ dom 𝑓 |
| 138 | 47 | simplbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ⊆ 𝑋) |
| 139 | 138 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣 ⊆ 𝑋) |
| 140 | 139 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣 ⊆ 𝑋) |
| 141 | 95, 140 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ⊆ 𝑋) |
| 142 | 137, 141 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ 𝑋) |
| 143 | 142 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑦 ∈ 𝑋) |
| 144 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ+) |
| 145 | 144 | rpred 13077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ) |
| 146 | | elpreima 7078 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn dom 𝑓 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ dom 𝑓 ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
| 147 | 146 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 Fn dom 𝑓 ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 148 | 93, 147 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
| 149 | | blhalf 24415 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑐 ∈ ℝ ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓‘𝑦)(ball‘𝑀)𝑐)) |
| 150 | 136, 143,
145, 148, 149 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓‘𝑦)(ball‘𝑀)𝑐)) |
| 151 | 150 | ssrind 4244 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
| 152 | 137 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → 𝑦 ∈ dom 𝑓) |
| 153 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:dom 𝑓⟶𝑌 ∧ 𝑦 ∈ dom 𝑓) → (𝑓‘𝑦) ∈ 𝑌) |
| 154 | 91, 152, 153 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ 𝑌) |
| 155 | | simp-5r 786 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑌 ⊆ 𝑋) |
| 156 | 155, 20 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑋 ∩ 𝑌) = 𝑌) |
| 157 | 154, 156 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑋 ∩ 𝑌)) |
| 158 | 110 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ*) |
| 159 | 1 | blres 24441 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑓‘𝑦) ∈ (𝑋 ∩ 𝑌) ∧ 𝑐 ∈ ℝ*) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) = (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
| 160 | 136, 157,
158, 159 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) = (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
| 161 | 151, 160 | sseqtrrd 4021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ((𝑓‘𝑦)(ball‘𝑁)𝑐)) |
| 162 | | fnfvelrn 7100 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → (𝑓‘𝑦) ∈ ran 𝑓) |
| 163 | 93, 152, 162 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ ran 𝑓) |
| 164 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑓‘𝑦) → (𝑧(ball‘𝑁)𝑐) = ((𝑓‘𝑦)(ball‘𝑁)𝑐)) |
| 165 | 164 | ssiun2s 5048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑦) ∈ ran 𝑓 → ((𝑓‘𝑦)(ball‘𝑁)𝑐) ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 166 | 163, 165 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 167 | 161, 166 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 168 | 167 | adantlr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 169 | 168 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
| 170 | 135, 169 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
| 171 | 127, 170 | pm2.61dne 3028 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 172 | 171 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 173 | | iunss 5045 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∀𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 174 | 172, 173 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 175 | 123, 174 | eqsstrrd 4019 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
| 176 | 116, 175 | eqssd 4001 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) = 𝑌) |
| 177 | 105, 176 | eqtrid 2789 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌) |
| 178 | | iuneq1 5008 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ran 𝑓 → ∪
𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐)) |
| 179 | 178 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑤 = ran 𝑓 → (∪
𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌 ↔ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 180 | 179 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
| 181 | 103, 177,
180 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
| 182 | 181 | ex 412 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 183 | 90, 182 | syld 47 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 184 | 183 | exlimdv 1933 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → (∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 185 | 67, 184 | mpd 15 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
| 186 | 185 | rexlimdvaa 3156 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∃𝑣 ∈ (𝒫
𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 187 | 46, 186 | syld 47 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 188 | 187 | ralrimdva 3154 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 189 | | istotbnd3 37778 |
. . . . 5
⊢ (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 190 | 189 | baib 535 |
. . . 4
⊢ (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 191 | 3, 190 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
| 192 | 188, 191 | sylibrd 259 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑁 ∈ (TotBnd‘𝑌))) |
| 193 | 38, 192 | impbid 212 |
1
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |