Step | Hyp | Ref
| Expression |
1 | | sstotbnd.2 |
. . . . 5
⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) |
2 | | metres2 23261 |
. . . . 5
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
3 | 1, 2 | eqeltrid 2842 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑁 ∈ (Met‘𝑌)) |
4 | | istotbnd3 35666 |
. . . . 5
⊢ (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
5 | 4 | baib 539 |
. . . 4
⊢ (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
6 | 3, 5 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) |
7 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌 ⊆ 𝑋) |
8 | 7 | sspwd 4528 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
9 | 8 | ssrind 4150 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝒫 𝑌 ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)) |
10 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) |
11 | 9, 10 | sseldd 3902 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) |
12 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌) |
13 | | metxmet 23232 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀 ∈ (∞Met‘𝑋)) |
14 | 13 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑀 ∈ (∞Met‘𝑋)) |
15 | | elfpw 8978 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ↔ (𝑣 ⊆ 𝑌 ∧ 𝑣 ∈ Fin)) |
16 | 15 | simplbi 501 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) → 𝑣 ⊆ 𝑌) |
17 | 16 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → 𝑣 ⊆ 𝑌) |
18 | 17 | sselda 3901 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ 𝑌) |
19 | | simp-4r 784 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑌 ⊆ 𝑋) |
20 | | sseqin2 4130 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ⊆ 𝑋 ↔ (𝑋 ∩ 𝑌) = 𝑌) |
21 | 19, 20 | sylib 221 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑋 ∩ 𝑌) = 𝑌) |
22 | 18, 21 | eleqtrrd 2841 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ (𝑋 ∩ 𝑌)) |
23 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑑 ∈ ℝ+) |
24 | 23 | rpxrd 12629 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → 𝑑 ∈ ℝ*) |
25 | 1 | blres 23329 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ (𝑋 ∩ 𝑌) ∧ 𝑑 ∈ ℝ*) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌)) |
26 | 14, 22, 24, 25 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑥(ball‘𝑁)𝑑) = ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌)) |
27 | | inss1 4143 |
. . . . . . . . . . . 12
⊢ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ⊆ (𝑥(ball‘𝑀)𝑑) |
28 | 26, 27 | eqsstrdi 3955 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) ∧ 𝑥 ∈ 𝑣) → (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑)) |
29 | 28 | ralrimiva 3105 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) →
∀𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑)) |
30 | | ss2iun 4922 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ (𝑥(ball‘𝑀)𝑑) → ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝒫 𝑌 ∩ Fin)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
32 | 31 | adantrr 717 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
33 | 12, 32 | eqsstrrd 3940 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
34 | 11, 33 | jca 515 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌)) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
35 | 34 | ex 416 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌) → (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)))) |
36 | 35 | reximdv2 3190 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑑 ∈ ℝ+) →
(∃𝑣 ∈ (𝒫
𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
37 | 36 | ralimdva 3100 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑁)𝑑) = 𝑌 → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
38 | 6, 37 | sylbid 243 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
39 | | simpr 488 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) → 𝑐 ∈
ℝ+) |
40 | 39 | rphalfcld 12640 |
. . . . . 6
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) → (𝑐 / 2) ∈
ℝ+) |
41 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑐 / 2) → (𝑥(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)(𝑐 / 2))) |
42 | 41 | iuneq2d 4933 |
. . . . . . . . 9
⊢ (𝑑 = (𝑐 / 2) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))) |
43 | 42 | sseq2d 3933 |
. . . . . . . 8
⊢ (𝑑 = (𝑐 / 2) → (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ↔ 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
44 | 43 | rexbidv 3216 |
. . . . . . 7
⊢ (𝑑 = (𝑐 / 2) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
45 | 44 | rspcv 3532 |
. . . . . 6
⊢ ((𝑐 / 2) ∈ ℝ+
→ (∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
46 | 40, 45 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) |
47 | | elfpw 8978 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin)) |
48 | 47 | simprbi 500 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin) |
49 | 48 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣 ∈ Fin) |
50 | | ssrab2 3993 |
. . . . . . . . 9
⊢ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣 |
51 | | ssfi 8851 |
. . . . . . . . 9
⊢ ((𝑣 ∈ Fin ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ⊆ 𝑣) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin) |
52 | 49, 50, 51 | sylancl 589 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin) |
53 | | oveq1 7220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑥(ball‘𝑀)(𝑐 / 2)) = (𝑦(ball‘𝑀)(𝑐 / 2))) |
54 | 53 | ineq1d 4126 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌)) |
55 | | incom 4115 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))) |
56 | 54, 55 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
57 | | dfin5 3874 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∩ (𝑦(ball‘𝑀)(𝑐 / 2))) = {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} |
58 | 56, 57 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))}) |
59 | 58 | neeq1d 3000 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ {𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅)) |
60 | | rabn0 4300 |
. . . . . . . . . . . 12
⊢ ({𝑧 ∈ 𝑌 ∣ 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))} ≠ ∅ ↔ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
61 | 59, 60 | bitrdi 290 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
62 | 61 | elrab 3602 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ↔ (𝑦 ∈ 𝑣 ∧ ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
63 | 62 | simprbi 500 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → ∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
64 | 63 | rgen 3071 |
. . . . . . . 8
⊢
∀𝑦 ∈
{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)) |
65 | | eleq1 2825 |
. . . . . . . . 9
⊢ (𝑧 = (𝑓‘𝑦) → (𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
66 | 65 | ac6sfi 8915 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∈ Fin ∧
∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}∃𝑧 ∈ 𝑌 𝑧 ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
67 | 52, 64, 66 | sylancl 589 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
68 | | fdm 6554 |
. . . . . . . . . . . . . 14
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → dom 𝑓 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
69 | 68 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
70 | 69, 50 | eqsstrdi 3955 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → dom 𝑓 ⊆ 𝑣) |
71 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌) |
72 | 69 | feq2d 6531 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓:dom 𝑓⟶𝑌 ↔ 𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌)) |
73 | 71, 72 | mpbird 260 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑓:dom 𝑓⟶𝑌) |
74 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
75 | | ffn 6545 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → 𝑓 Fn {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) |
76 | | elpreima 6878 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
78 | 77 | baibd 543 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}) → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
79 | 78 | ralbidva 3117 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 → (∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
80 | 79 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
81 | 74, 80 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
82 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
83 | | oveq1 7220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑦(ball‘𝑀)(𝑐 / 2)) = (𝑥(ball‘𝑀)(𝑐 / 2))) |
84 | 83 | imaeq2d 5929 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) = (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) |
85 | 82, 84 | eleq12d 2832 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
86 | 85 | ralrab2 3612 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
87 | 81, 86 | sylib 221 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
88 | 70, 73, 87 | 3jca 1130 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ Fin ∧ (𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) |
89 | 88 | ex 416 |
. . . . . . . . . 10
⊢ (𝑣 ∈ Fin → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))))) |
90 | 49, 89 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))))) |
91 | | simpr2 1197 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓:dom 𝑓⟶𝑌) |
92 | 91 | frnd 6553 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ⊆ 𝑌) |
93 | 91 | ffnd 6546 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 Fn dom 𝑓) |
94 | 49 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣 ∈ Fin) |
95 | | simpr1 1196 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ⊆ 𝑣) |
96 | | ssfi 8851 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Fin ∧ dom 𝑓 ⊆ 𝑣) → dom 𝑓 ∈ Fin) |
97 | 94, 95, 96 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ∈ Fin) |
98 | | fnfi 8858 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn dom 𝑓 ∧ dom 𝑓 ∈ Fin) → 𝑓 ∈ Fin) |
99 | 93, 97, 98 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑓 ∈ Fin) |
100 | | rnfi 8959 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ Fin → ran 𝑓 ∈ Fin) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ Fin) |
102 | | elfpw 8978 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑌 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑌 ∧ ran 𝑓 ∈ Fin)) |
103 | 92, 101, 102 | sylanbrc 586 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ran 𝑓 ∈ (𝒫 𝑌 ∩ Fin)) |
104 | | oveq1 7220 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥(ball‘𝑁)𝑐) = (𝑧(ball‘𝑁)𝑐)) |
105 | 104 | cbviunv 4949 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) |
106 | 3 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (Met‘𝑌)) |
107 | | metxmet 23232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ (Met‘𝑌) → 𝑁 ∈ (∞Met‘𝑌)) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑁 ∈ (∞Met‘𝑌)) |
109 | 92 | sselda 3901 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝑌) |
110 | | rpxr 12595 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ ℝ+
→ 𝑐 ∈
ℝ*) |
111 | 110 | ad4antlr 733 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → 𝑐 ∈ ℝ*) |
112 | | blssm 23316 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑧 ∈ 𝑌 ∧ 𝑐 ∈ ℝ*) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
113 | 108, 109,
111, 112 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑧 ∈ ran 𝑓) → (𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
114 | 113 | ralrimiva 3105 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
115 | | iunss 4954 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌 ↔ ∀𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
116 | 114, 115 | sylibr 237 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ⊆ 𝑌) |
117 | | iunin1 4980 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = (∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) |
118 | | simplrr 778 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2))) |
119 | 53 | cbviunv 4949 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) = ∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) |
120 | 118, 119 | sseqtrdi 3951 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2))) |
121 | | sseqin2 4130 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ⊆ ∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ↔ (∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
122 | 120, 121 | sylib 221 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → (∪ 𝑦 ∈ 𝑣 (𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
123 | 117, 122 | syl5eq 2790 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = 𝑌) |
124 | | 0ss 4311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∅
⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) |
125 | | sseq1 3926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∅ ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
126 | 124, 125 | mpbiri 261 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
127 | 126 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) = ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
128 | | simpr3 1198 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) |
129 | 54 | neeq1d 3000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ ↔ ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅)) |
130 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
131 | 53 | imaeq2d 5929 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) = (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) |
132 | 130, 131 | eleq12d 2832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))) ↔ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
133 | 129, 132 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → ((((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ↔ (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))))) |
134 | 133 | rspccva 3536 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑥 ∈
𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
135 | 128, 134 | sylan 583 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
136 | 13 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑀 ∈ (∞Met‘𝑋)) |
137 | | cnvimass 5949 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ dom 𝑓 |
138 | 47 | simplbi 501 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ⊆ 𝑋) |
139 | 138 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → 𝑣 ⊆ 𝑋) |
140 | 139 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑣 ⊆ 𝑋) |
141 | 95, 140 | sstrd 3911 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → dom 𝑓 ⊆ 𝑋) |
142 | 137, 141 | sstrid 3912 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ⊆ 𝑋) |
143 | 142 | sselda 3901 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑦 ∈ 𝑋) |
144 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ+) |
145 | 144 | rpred 12628 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ) |
146 | | elpreima 6878 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn dom 𝑓 → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) ↔ (𝑦 ∈ dom 𝑓 ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))))) |
147 | 146 | simplbda 503 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 Fn dom 𝑓 ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
148 | 93, 147 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) |
149 | | blhalf 23303 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑐 ∈ ℝ ∧ (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓‘𝑦)(ball‘𝑀)𝑐)) |
150 | 136, 143,
145, 148, 149 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑦(ball‘𝑀)(𝑐 / 2)) ⊆ ((𝑓‘𝑦)(ball‘𝑀)𝑐)) |
151 | 150 | ssrind 4150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
152 | 137 | sseli 3896 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → 𝑦 ∈ dom 𝑓) |
153 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:dom 𝑓⟶𝑌 ∧ 𝑦 ∈ dom 𝑓) → (𝑓‘𝑦) ∈ 𝑌) |
154 | 91, 152, 153 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ 𝑌) |
155 | | simp-5r 786 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑌 ⊆ 𝑋) |
156 | 155, 20 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑋 ∩ 𝑌) = 𝑌) |
157 | 154, 156 | eleqtrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ (𝑋 ∩ 𝑌)) |
158 | 110 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → 𝑐 ∈ ℝ*) |
159 | 1 | blres 23329 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝑓‘𝑦) ∈ (𝑋 ∩ 𝑌) ∧ 𝑐 ∈ ℝ*) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) = (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
160 | 136, 157,
158, 159 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) = (((𝑓‘𝑦)(ball‘𝑀)𝑐) ∩ 𝑌)) |
161 | 151, 160 | sseqtrrd 3942 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ((𝑓‘𝑦)(ball‘𝑁)𝑐)) |
162 | | fnfvelrn 6901 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 Fn dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → (𝑓‘𝑦) ∈ ran 𝑓) |
163 | 93, 152, 162 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → (𝑓‘𝑦) ∈ ran 𝑓) |
164 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑓‘𝑦) → (𝑧(ball‘𝑁)𝑐) = ((𝑓‘𝑦)(ball‘𝑁)𝑐)) |
165 | 164 | ssiun2s 4957 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑦) ∈ ran 𝑓 → ((𝑓‘𝑦)(ball‘𝑁)𝑐) ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
166 | 163, 165 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑓‘𝑦)(ball‘𝑁)𝑐) ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
167 | 161, 166 | sstrd 3911 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
168 | 167 | adantlr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) ∧ 𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2)))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
169 | 168 | ex 416 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (𝑦 ∈ (◡𝑓 “ (𝑦(ball‘𝑀)(𝑐 / 2))) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
170 | 135, 169 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → (((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐))) |
171 | 127, 170 | pm2.61dne 3028 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) ∧ 𝑦 ∈ 𝑣) → ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
172 | 171 | ralrimiva 3105 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∀𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
173 | | iunss 4954 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) ↔ ∀𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
174 | 172, 173 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑦 ∈ 𝑣 ((𝑦(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ⊆ ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
175 | 123, 174 | eqsstrrd 3940 |
. . . . . . . . . . . . 13
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → 𝑌 ⊆ ∪
𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐)) |
176 | 116, 175 | eqssd 3918 |
. . . . . . . . . . . 12
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑧 ∈ ran 𝑓(𝑧(ball‘𝑁)𝑐) = 𝑌) |
177 | 105, 176 | syl5eq 2790 |
. . . . . . . . . . 11
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌) |
178 | | iuneq1 4920 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ran 𝑓 → ∪
𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐)) |
179 | 178 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑤 = ran 𝑓 → (∪
𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌 ↔ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌)) |
180 | 179 | rspcev 3537 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑌 ∩ Fin) ∧ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑁)𝑐) = 𝑌) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
181 | 103, 177,
180 | syl2anc 587 |
. . . . . . . . . 10
⊢
(((((𝑀 ∈
(Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) ∧ (dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2)))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
182 | 181 | ex 416 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((dom 𝑓 ⊆ 𝑣 ∧ 𝑓:dom 𝑓⟶𝑌 ∧ ∀𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅ → 𝑥 ∈ (◡𝑓 “ (𝑥(ball‘𝑀)(𝑐 / 2))))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
183 | 90, 182 | syld 47 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ((𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
184 | 183 | exlimdv 1941 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → (∃𝑓(𝑓:{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅}⟶𝑌 ∧ ∀𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)(𝑐 / 2)) ∩ 𝑌) ≠ ∅} (𝑓‘𝑦) ∈ (𝑦(ball‘𝑀)(𝑐 / 2))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
185 | 67, 184 | mpd 15 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)))) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌) |
186 | 185 | rexlimdvaa 3204 |
. . . . 5
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∃𝑣 ∈ (𝒫
𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)(𝑐 / 2)) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
187 | 46, 186 | syld 47 |
. . . 4
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑐 ∈ ℝ+) →
(∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
188 | 187 | ralrimdva 3110 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
189 | | istotbnd3 35666 |
. . . . 5
⊢ (𝑁 ∈ (TotBnd‘𝑌) ↔ (𝑁 ∈ (Met‘𝑌) ∧ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
190 | 189 | baib 539 |
. . . 4
⊢ (𝑁 ∈ (Met‘𝑌) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
191 | 3, 190 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑐 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑌 ∩ Fin)∪ 𝑥 ∈ 𝑤 (𝑥(ball‘𝑁)𝑐) = 𝑌)) |
192 | 188, 191 | sylibrd 262 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑁 ∈ (TotBnd‘𝑌))) |
193 | 38, 192 | impbid 215 |
1
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |