MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmogelb Structured version   Visualization version   GIF version

Theorem nmogelb 23319
Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmogelb (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
Distinct variable groups:   𝑥,𝑟,𝐿   𝑀,𝑟,𝑥   𝑆,𝑟,𝑥   𝑇,𝑟,𝑥   𝐴,𝑟,𝑥   𝐹,𝑟,𝑥   𝑉,𝑟,𝑥   𝑁,𝑟,𝑥

Proof of Theorem nmogelb
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
2 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3 nmofval.3 . . . 4 𝐿 = (norm‘𝑆)
4 nmofval.4 . . . 4 𝑀 = (norm‘𝑇)
51, 2, 3, 4nmoval 23318 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
65breq2d 5070 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐴 ≤ (𝑁𝐹) ↔ 𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
7 ssrab2 4055 . . . . 5 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ (0[,)+∞)
8 icossxr 12815 . . . . 5 (0[,)+∞) ⊆ ℝ*
97, 8sstri 3975 . . . 4 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*
10 infxrgelb 12722 . . . 4 (({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠))
119, 10mpan 688 . . 3 (𝐴 ∈ ℝ* → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠))
12 breq2 5062 . . . 4 (𝑠 = 𝑟 → (𝐴𝑠𝐴𝑟))
1312ralrab2 3689 . . 3 (∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠 ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟))
1411, 13syl6bb 289 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
156, 14sylan9bb 512 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  wss 3935   class class class wbr 5058  cfv 6349  (class class class)co 7150  infcinf 8899  0cc0 10531   · cmul 10536  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  [,)cico 12734  Basecbs 16477   GrpHom cghm 18349  normcnm 23180  NrmGrpcngp 23181   normOp cnmo 23308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-ico 12738  df-nmo 23311
This theorem is referenced by:  nmolb  23320  nmoge0  23324  nmoi  23331
  Copyright terms: Public domain W3C validator