MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmogelb Structured version   Visualization version   GIF version

Theorem nmogelb 24453
Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Baseβ€˜π‘†)
nmofval.3 𝐿 = (normβ€˜π‘†)
nmofval.4 𝑀 = (normβ€˜π‘‡)
Assertion
Ref Expression
nmogelb (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) β†’ (𝐴 ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ 𝐴 ≀ π‘Ÿ)))
Distinct variable groups:   π‘₯,π‘Ÿ,𝐿   𝑀,π‘Ÿ,π‘₯   𝑆,π‘Ÿ,π‘₯   𝑇,π‘Ÿ,π‘₯   𝐴,π‘Ÿ,π‘₯   𝐹,π‘Ÿ,π‘₯   𝑉,π‘Ÿ,π‘₯   𝑁,π‘Ÿ,π‘₯

Proof of Theorem nmogelb
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
2 nmofval.2 . . . 4 𝑉 = (Baseβ€˜π‘†)
3 nmofval.3 . . . 4 𝐿 = (normβ€˜π‘†)
4 nmofval.4 . . . 4 𝑀 = (normβ€˜π‘‡)
51, 2, 3, 4nmoval 24452 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (π‘β€˜πΉ) = inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ))
65breq2d 5159 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) β†’ (𝐴 ≀ (π‘β€˜πΉ) ↔ 𝐴 ≀ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )))
7 ssrab2 4076 . . . . 5 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† (0[,)+∞)
8 icossxr 13413 . . . . 5 (0[,)+∞) βŠ† ℝ*
97, 8sstri 3990 . . . 4 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ*
10 infxrgelb 13318 . . . 4 (({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ* ∧ 𝐴 ∈ ℝ*) β†’ (𝐴 ≀ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ↔ βˆ€π‘  ∈ {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}𝐴 ≀ 𝑠))
119, 10mpan 686 . . 3 (𝐴 ∈ ℝ* β†’ (𝐴 ≀ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ↔ βˆ€π‘  ∈ {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}𝐴 ≀ 𝑠))
12 breq2 5151 . . . 4 (𝑠 = π‘Ÿ β†’ (𝐴 ≀ 𝑠 ↔ 𝐴 ≀ π‘Ÿ))
1312ralrab2 3693 . . 3 (βˆ€π‘  ∈ {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}𝐴 ≀ 𝑠 ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ 𝐴 ≀ π‘Ÿ))
1411, 13bitrdi 286 . 2 (𝐴 ∈ ℝ* β†’ (𝐴 ≀ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ 𝐴 ≀ π‘Ÿ)))
156, 14sylan9bb 508 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) β†’ (𝐴 ≀ (π‘β€˜πΉ) ↔ βˆ€π‘Ÿ ∈ (0[,)+∞)(βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(πΉβ€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯)) β†’ 𝐴 ≀ π‘Ÿ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  infcinf 9438  0cc0 11112   Β· cmul 11117  +∞cpnf 11249  β„*cxr 11251   < clt 11252   ≀ cle 11253  [,)cico 13330  Basecbs 17148   GrpHom cghm 19127  normcnm 24305  NrmGrpcngp 24306   normOp cnmo 24442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-ico 13334  df-nmo 24445
This theorem is referenced by:  nmolb  24454  nmoge0  24458  nmoi  24465
  Copyright terms: Public domain W3C validator