MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmogelb Structured version   Visualization version   GIF version

Theorem nmogelb 24752
Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmogelb (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
Distinct variable groups:   𝑥,𝑟,𝐿   𝑀,𝑟,𝑥   𝑆,𝑟,𝑥   𝑇,𝑟,𝑥   𝐴,𝑟,𝑥   𝐹,𝑟,𝑥   𝑉,𝑟,𝑥   𝑁,𝑟,𝑥

Proof of Theorem nmogelb
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . 4 𝑁 = (𝑆 normOp 𝑇)
2 nmofval.2 . . . 4 𝑉 = (Base‘𝑆)
3 nmofval.3 . . . 4 𝐿 = (norm‘𝑆)
4 nmofval.4 . . . 4 𝑀 = (norm‘𝑇)
51, 2, 3, 4nmoval 24751 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
65breq2d 5159 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐴 ≤ (𝑁𝐹) ↔ 𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
7 ssrab2 4089 . . . . 5 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ (0[,)+∞)
8 icossxr 13468 . . . . 5 (0[,)+∞) ⊆ ℝ*
97, 8sstri 4004 . . . 4 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*
10 infxrgelb 13373 . . . 4 (({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠))
119, 10mpan 690 . . 3 (𝐴 ∈ ℝ* → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠))
12 breq2 5151 . . . 4 (𝑠 = 𝑟 → (𝐴𝑠𝐴𝑟))
1312ralrab2 3706 . . 3 (∀𝑠 ∈ {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}𝐴𝑠 ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟))
1411, 13bitrdi 287 . 2 (𝐴 ∈ ℝ* → (𝐴 ≤ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
156, 14sylan9bb 509 1 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (𝑁𝐹) ↔ ∀𝑟 ∈ (0[,)+∞)(∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥)) → 𝐴𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  {crab 3432  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  infcinf 9478  0cc0 11152   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  [,)cico 13385  Basecbs 17244   GrpHom cghm 19242  normcnm 24604  NrmGrpcngp 24605   normOp cnmo 24741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-ico 13389  df-nmo 24744
This theorem is referenced by:  nmolb  24753  nmoge0  24757  nmoi  24764
  Copyright terms: Public domain W3C validator