![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmogelb | Structured version Visualization version GIF version |
Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
nmofval.1 | β’ π = (π normOp π) |
nmofval.2 | β’ π = (Baseβπ) |
nmofval.3 | β’ πΏ = (normβπ) |
nmofval.4 | β’ π = (normβπ) |
Ref | Expression |
---|---|
nmogelb | β’ (((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β§ π΄ β β*) β (π΄ β€ (πβπΉ) β βπ β (0[,)+β)(βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯)) β π΄ β€ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmofval.1 | . . . 4 β’ π = (π normOp π) | |
2 | nmofval.2 | . . . 4 β’ π = (Baseβπ) | |
3 | nmofval.3 | . . . 4 β’ πΏ = (normβπ) | |
4 | nmofval.4 | . . . 4 β’ π = (normβπ) | |
5 | 1, 2, 3, 4 | nmoval 24452 | . . 3 β’ ((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β (πβπΉ) = inf({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}, β*, < )) |
6 | 5 | breq2d 5159 | . 2 β’ ((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β (π΄ β€ (πβπΉ) β π΄ β€ inf({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}, β*, < ))) |
7 | ssrab2 4076 | . . . . 5 β’ {π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))} β (0[,)+β) | |
8 | icossxr 13413 | . . . . 5 β’ (0[,)+β) β β* | |
9 | 7, 8 | sstri 3990 | . . . 4 β’ {π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))} β β* |
10 | infxrgelb 13318 | . . . 4 β’ (({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))} β β* β§ π΄ β β*) β (π΄ β€ inf({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}, β*, < ) β βπ β {π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}π΄ β€ π )) | |
11 | 9, 10 | mpan 686 | . . 3 β’ (π΄ β β* β (π΄ β€ inf({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}, β*, < ) β βπ β {π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}π΄ β€ π )) |
12 | breq2 5151 | . . . 4 β’ (π = π β (π΄ β€ π β π΄ β€ π)) | |
13 | 12 | ralrab2 3693 | . . 3 β’ (βπ β {π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}π΄ β€ π β βπ β (0[,)+β)(βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯)) β π΄ β€ π)) |
14 | 11, 13 | bitrdi 286 | . 2 β’ (π΄ β β* β (π΄ β€ inf({π β (0[,)+β) β£ βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯))}, β*, < ) β βπ β (0[,)+β)(βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯)) β π΄ β€ π))) |
15 | 6, 14 | sylan9bb 508 | 1 β’ (((π β NrmGrp β§ π β NrmGrp β§ πΉ β (π GrpHom π)) β§ π΄ β β*) β (π΄ β€ (πβπΉ) β βπ β (0[,)+β)(βπ₯ β π (πβ(πΉβπ₯)) β€ (π Β· (πΏβπ₯)) β π΄ β€ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 β wss 3947 class class class wbr 5147 βcfv 6542 (class class class)co 7411 infcinf 9438 0cc0 11112 Β· cmul 11117 +βcpnf 11249 β*cxr 11251 < clt 11252 β€ cle 11253 [,)cico 13330 Basecbs 17148 GrpHom cghm 19127 normcnm 24305 NrmGrpcngp 24306 normOp cnmo 24442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-ico 13334 df-nmo 24445 |
This theorem is referenced by: nmolb 24454 nmoge0 24458 nmoi 24465 |
Copyright terms: Public domain | W3C validator |