MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcnp Structured version   Visualization version   GIF version

Theorem ghmcnp 24000
Description: A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.)
Hypotheses
Ref Expression
ghmcnp.x 𝑋 = (Base‘𝐺)
ghmcnp.j 𝐽 = (TopOpen‘𝐺)
ghmcnp.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
ghmcnp ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem ghmcnp
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 𝐽 = 𝐽
21cnprcl 23130 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽)
32a1i 11 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽))
4 ghmcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
5 ghmcnp.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
64, 5tmdtopon 23966 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
763ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
9 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐻 ∈ TopMnd)
10 ghmcnp.k . . . . . . . . 9 𝐾 = (TopOpen‘𝐻)
11 eqid 2729 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
1210, 11tmdtopon 23966 . . . . . . . 8 (𝐻 ∈ TopMnd → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
139, 12syl 17 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
14 simpr 484 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
15 cnpf2 23135 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
168, 13, 14, 15syl3anc 1373 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
1716adantr 480 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶(Base‘𝐻))
1814adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
19 eqid 2729 . . . . . . . . . . . . . . 15 (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) = (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤))
2019mptpreima 6187 . . . . . . . . . . . . . 14 ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) = {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}
219adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ TopMnd)
2216adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
23 simpll3 1215 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
24 ghmgrp1 19097 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐺 ∈ Grp)
26 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑥𝑋)
272adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
28 toponuni 22799 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
298, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝑋 = 𝐽)
3027, 29eleqtrrd 2831 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
3130adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐴𝑋)
32 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (-g𝐺) = (-g𝐺)
335, 32grpsubcl 18899 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3425, 26, 31, 33syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3522, 34ffvelcdmd 7019 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻))
36 eqid 2729 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
3719, 11, 36, 10tmdlactcn 23987 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ TopMnd ∧ (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻)) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
3821, 35, 37syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
39 simprrl 780 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑦𝐾)
40 cnima 23150 . . . . . . . . . . . . . . 15 (((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾) ∧ 𝑦𝐾) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4220, 41eqeltrrid 2833 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾)
43 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝐴) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)))
4443eleq1d 2813 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝐴) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦))
4522, 31ffvelcdmd 7019 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ (Base‘𝐻))
46 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (-g𝐻) = (-g𝐻)
475, 32, 46ghmsub 19103 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋𝐴𝑋) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4823, 26, 31, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4948oveq1d 7364 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)))
50 ghmgrp2 19098 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
5123, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ Grp)
5222, 26ffvelcdmd 7019 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ (Base‘𝐻))
5311, 36, 46grpnpcan 18911 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐻) ∧ (𝐹𝐴) ∈ (Base‘𝐻)) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5451, 52, 45, 53syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5549, 54eqtrd 2764 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
56 simprrr 781 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ 𝑦)
5755, 56eqeltrd 2828 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦)
5844, 45, 57elrabd 3650 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦})
59 cnpimaex 23141 . . . . . . . . . . . . 13 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾 ∧ (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
6018, 42, 58, 59syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
61 ssrab 4024 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹𝑧) ⊆ (Base‘𝐻) ∧ ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦))
6261simprbi 496 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦)
6322adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹:𝑋⟶(Base‘𝐻))
6463ffnd 6653 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹 Fn 𝑋)
658adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
66 toponss 22812 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
6765, 66sylan 580 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝑧𝑋)
68 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑣) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)))
6968eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑣) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7069ralima 7173 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑋𝑧𝑋) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7164, 67, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7262, 71imbitrid 244 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
73 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))
7473mptpreima 6187 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}
75 simpl1 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺 ∈ TopMnd)
7675ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ TopMnd)
7725adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ Grp)
7831adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑋)
7926adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥𝑋)
805, 32grpsubcl 18899 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
8177, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
82 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (+g𝐺) = (+g𝐺)
8373, 5, 82, 4tmdlactcn 23987 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ TopMnd ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
8476, 81, 83syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
85 simprl 770 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑧𝐽)
86 cnima 23150 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8784, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8874, 87eqeltrrid 2833 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽)
89 oveq2 7357 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥))
9089eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 ↔ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
915, 82, 32grpnpcan 18911 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
9277, 78, 79, 91syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
93 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑧)
9492, 93eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
9590, 79, 94elrabd 3650 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧})
96 simprrr 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦)
97 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (𝐹𝑣) = (𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
9897oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
9998eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10099rspccv 3574 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10196, 100syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10323adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10434adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
105103, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐺 ∈ Grp)
10631adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐴𝑋)
10726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑥𝑋)
108105, 106, 107, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
109 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑤𝑋)
1105, 82grpcl 18820 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ Grp ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
111105, 108, 109, 110syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
1125, 82, 36ghmlin 19100 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
113103, 104, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
114 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (invg𝐺) = (invg𝐺)
1155, 32, 114grpinvsub 18901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
116105, 107, 106, 115syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
117116oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)))
118 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0g𝐺) = (0g𝐺)
1195, 82, 118, 114grprinv 18869 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ Grp ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
120105, 104, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
121117, 120eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)) = (0g𝐺))
122121oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((0g𝐺)(+g𝐺)𝑤))
1235, 82grpass 18821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ ((𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋)) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
124105, 104, 108, 109, 123syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
1255, 82, 118grplid 18846 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
126105, 109, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
127122, 124, 1263eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = 𝑤)
128127fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
129113, 128eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
130129adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
131130eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
132102, 131sylibd 239 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
133132ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
134 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
135134eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝐹𝑣) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
136135ralrab2 3658 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦 ↔ ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
137133, 136sylibr 234 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦)
13822adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
139138ffund 6656 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → Fun 𝐹)
140 ssrab2 4031 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ 𝑋
141138fdmd 6662 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → dom 𝐹 = 𝑋)
142140, 141sseqtrrid 3979 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹)
143 funimass4 6887 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
144139, 142, 143syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
145137, 144mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)
146 eleq2 2817 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝑥𝑢𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
147 imaeq2 6007 . . . . . . . . . . . . . . . . . . 19 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝐹𝑢) = (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
148147sseq1d 3967 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝐹𝑢) ⊆ 𝑦 ↔ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦))
149146, 148anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)))
150149rspcev 3577 . . . . . . . . . . . . . . . 16 (({𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽 ∧ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
15188, 95, 145, 150syl12anc 836 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
152151expr 456 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15372, 152sylan2d 605 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
154153rexlimdva 3130 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15560, 154mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
156155anassrs 467 . . . . . . . . . 10 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
157156expr 456 . . . . . . . . 9 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
158157ralrimiva 3121 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
1598adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
16013adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
161 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝑥𝑋)
162 iscnp 23122 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
163159, 160, 161, 162syl3anc 1373 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
16417, 158, 163mpbir2and 713 . . . . . . 7 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
165164ralrimiva 3121 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
166 cncnp 23165 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
1678, 13, 166syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
16816, 165, 167mpbir2and 713 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ (𝐽 Cn 𝐾))
169168ex 412 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹 ∈ (𝐽 Cn 𝐾)))
1703, 169jcad 512 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1711cncnpi 23163 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
172171ancoms 458 . . 3 ((𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
173170, 172impbid1 225 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1747, 28syl 17 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝑋 = 𝐽)
175174eleq2d 2814 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐴𝑋𝐴 𝐽))
176175anbi1d 631 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → ((𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
177173, 176bitr4d 282 1 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  wss 3903   cuni 4858  cmpt 5173  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  TopOpenctopn 17325  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  -gcsg 18814   GrpHom cghm 19091  TopOnctopon 22795   Cn ccn 23109   CnP ccnp 23110  TopMndctmd 23955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-0g 17345  df-topgen 17347  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-ghm 19092  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-tmd 23957
This theorem is referenced by:  qqhcn  33958
  Copyright terms: Public domain W3C validator