MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcnp Structured version   Visualization version   GIF version

Theorem ghmcnp 23466
Description: A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.)
Hypotheses
Ref Expression
ghmcnp.x 𝑋 = (Base‘𝐺)
ghmcnp.j 𝐽 = (TopOpen‘𝐺)
ghmcnp.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
ghmcnp ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem ghmcnp
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 𝐽 = 𝐽
21cnprcl 22596 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽)
32a1i 11 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽))
4 ghmcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
5 ghmcnp.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
64, 5tmdtopon 23432 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
763ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝐽 ∈ (TopOn‘𝑋))
87adantr 481 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
9 simpl2 1192 . . . . . . . 8 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐻 ∈ TopMnd)
10 ghmcnp.k . . . . . . . . 9 𝐾 = (TopOpen‘𝐻)
11 eqid 2736 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
1210, 11tmdtopon 23432 . . . . . . . 8 (𝐻 ∈ TopMnd → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
139, 12syl 17 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
14 simpr 485 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
15 cnpf2 22601 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
168, 13, 14, 15syl3anc 1371 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
1716adantr 481 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶(Base‘𝐻))
1814adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
19 eqid 2736 . . . . . . . . . . . . . . 15 (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) = (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤))
2019mptpreima 6190 . . . . . . . . . . . . . 14 ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) = {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}
219adantr 481 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ TopMnd)
2216adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
23 simpll3 1214 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
24 ghmgrp1 19010 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐺 ∈ Grp)
26 simprl 769 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑥𝑋)
272adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
28 toponuni 22263 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
298, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝑋 = 𝐽)
3027, 29eleqtrrd 2841 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
3130adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐴𝑋)
32 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝐺) = (-g𝐺)
335, 32grpsubcl 18827 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3425, 26, 31, 33syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3522, 34ffvelcdmd 7036 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻))
36 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
3719, 11, 36, 10tmdlactcn 23453 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ TopMnd ∧ (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻)) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
3821, 35, 37syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
39 simprrl 779 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑦𝐾)
40 cnima 22616 . . . . . . . . . . . . . . 15 (((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾) ∧ 𝑦𝐾) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4220, 41eqeltrrid 2843 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾)
43 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝐴) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)))
4443eleq1d 2822 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝐴) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦))
4522, 31ffvelcdmd 7036 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ (Base‘𝐻))
46 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝐻) = (-g𝐻)
475, 32, 46ghmsub 19016 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋𝐴𝑋) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4823, 26, 31, 47syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4948oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)))
50 ghmgrp2 19011 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
5123, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ Grp)
5222, 26ffvelcdmd 7036 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ (Base‘𝐻))
5311, 36, 46grpnpcan 18839 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐻) ∧ (𝐹𝐴) ∈ (Base‘𝐻)) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5451, 52, 45, 53syl3anc 1371 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5549, 54eqtrd 2776 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
56 simprrr 780 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ 𝑦)
5755, 56eqeltrd 2838 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦)
5844, 45, 57elrabd 3647 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦})
59 cnpimaex 22607 . . . . . . . . . . . . 13 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾 ∧ (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
6018, 42, 58, 59syl3anc 1371 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
61 ssrab 4030 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹𝑧) ⊆ (Base‘𝐻) ∧ ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦))
6261simprbi 497 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦)
6322adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹:𝑋⟶(Base‘𝐻))
6463ffnd 6669 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹 Fn 𝑋)
658adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
66 toponss 22276 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
6765, 66sylan 580 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝑧𝑋)
68 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑣) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)))
6968eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑣) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7069ralima 7188 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑋𝑧𝑋) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7164, 67, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7262, 71imbitrid 243 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
73 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))
7473mptpreima 6190 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}
75 simpl1 1191 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺 ∈ TopMnd)
7675ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ TopMnd)
7725adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ Grp)
7831adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑋)
7926adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥𝑋)
805, 32grpsubcl 18827 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
8177, 78, 79, 80syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
82 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (+g𝐺) = (+g𝐺)
8373, 5, 82, 4tmdlactcn 23453 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ TopMnd ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
8476, 81, 83syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
85 simprl 769 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑧𝐽)
86 cnima 22616 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8784, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8874, 87eqeltrrid 2843 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽)
89 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥))
9089eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 ↔ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
915, 82, 32grpnpcan 18839 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
9277, 78, 79, 91syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
93 simprrl 779 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑧)
9492, 93eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
9590, 79, 94elrabd 3647 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧})
96 simprrr 780 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦)
97 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (𝐹𝑣) = (𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
9897oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
9998eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10099rspccv 3578 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10196, 100syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
102101adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10323adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10434adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
105103, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐺 ∈ Grp)
10631adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐴𝑋)
10726adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑥𝑋)
108105, 106, 107, 80syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
109 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑤𝑋)
1105, 82grpcl 18756 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ Grp ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
111105, 108, 109, 110syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
1125, 82, 36ghmlin 19013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
113103, 104, 111, 112syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
114 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (invg𝐺) = (invg𝐺)
1155, 32, 114grpinvsub 18829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
116105, 107, 106, 115syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
117116oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)))
118 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0g𝐺) = (0g𝐺)
1195, 82, 118, 114grprinv 18801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ Grp ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
120105, 104, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
121117, 120eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)) = (0g𝐺))
122121oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((0g𝐺)(+g𝐺)𝑤))
1235, 82grpass 18757 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ ((𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋)) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
124105, 104, 108, 109, 123syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
1255, 82, 118grplid 18780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
126105, 109, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
127122, 124, 1263eqtr3d 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = 𝑤)
128127fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
129113, 128eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
130129adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
131130eleq1d 2822 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
132102, 131sylibd 238 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
133132ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
134 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
135134eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝐹𝑣) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
136135ralrab2 3656 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦 ↔ ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
137133, 136sylibr 233 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦)
13822adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
139138ffund 6672 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → Fun 𝐹)
140 ssrab2 4037 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ 𝑋
141138fdmd 6679 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → dom 𝐹 = 𝑋)
142140, 141sseqtrrid 3997 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹)
143 funimass4 6907 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
144139, 142, 143syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
145137, 144mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)
146 eleq2 2826 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝑥𝑢𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
147 imaeq2 6009 . . . . . . . . . . . . . . . . . . 19 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝐹𝑢) = (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
148147sseq1d 3975 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝐹𝑢) ⊆ 𝑦 ↔ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦))
149146, 148anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)))
150149rspcev 3581 . . . . . . . . . . . . . . . 16 (({𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽 ∧ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
15188, 95, 145, 150syl12anc 835 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
152151expr 457 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15372, 152sylan2d 605 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
154153rexlimdva 3152 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15560, 154mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
156155anassrs 468 . . . . . . . . . 10 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
157156expr 457 . . . . . . . . 9 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
158157ralrimiva 3143 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
1598adantr 481 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
16013adantr 481 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
161 simpr 485 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝑥𝑋)
162 iscnp 22588 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
163159, 160, 161, 162syl3anc 1371 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
16417, 158, 163mpbir2and 711 . . . . . . 7 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
165164ralrimiva 3143 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
166 cncnp 22631 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
1678, 13, 166syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
16816, 165, 167mpbir2and 711 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ (𝐽 Cn 𝐾))
169168ex 413 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹 ∈ (𝐽 Cn 𝐾)))
1703, 169jcad 513 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1711cncnpi 22629 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
172171ancoms 459 . . 3 ((𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
173170, 172impbid1 224 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1747, 28syl 17 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝑋 = 𝐽)
175174eleq2d 2823 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐴𝑋𝐴 𝐽))
176175anbi1d 630 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → ((𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
177173, 176bitr4d 281 1 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  wss 3910   cuni 4865  cmpt 5188  ccnv 5632  dom cdm 5633  cima 5636  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  TopOpenctopn 17303  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  -gcsg 18750   GrpHom cghm 19005  TopOnctopon 22259   Cn ccn 22575   CnP ccnp 22576  TopMndctmd 23421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-0g 17323  df-topgen 17325  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-ghm 19006  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-tmd 23423
This theorem is referenced by:  qqhcn  32572
  Copyright terms: Public domain W3C validator