MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcnp Structured version   Visualization version   GIF version

Theorem ghmcnp 24058
Description: A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.)
Hypotheses
Ref Expression
ghmcnp.x 𝑋 = (Base‘𝐺)
ghmcnp.j 𝐽 = (TopOpen‘𝐺)
ghmcnp.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
ghmcnp ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem ghmcnp
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 𝐽 = 𝐽
21cnprcl 23188 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽)
32a1i 11 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽))
4 ghmcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
5 ghmcnp.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
64, 5tmdtopon 24024 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
763ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
9 simpl2 1193 . . . . . . . 8 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐻 ∈ TopMnd)
10 ghmcnp.k . . . . . . . . 9 𝐾 = (TopOpen‘𝐻)
11 eqid 2736 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
1210, 11tmdtopon 24024 . . . . . . . 8 (𝐻 ∈ TopMnd → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
139, 12syl 17 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
14 simpr 484 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
15 cnpf2 23193 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
168, 13, 14, 15syl3anc 1373 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
1716adantr 480 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶(Base‘𝐻))
1814adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
19 eqid 2736 . . . . . . . . . . . . . . 15 (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) = (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤))
2019mptpreima 6232 . . . . . . . . . . . . . 14 ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) = {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}
219adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ TopMnd)
2216adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
23 simpll3 1215 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
24 ghmgrp1 19206 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐺 ∈ Grp)
26 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑥𝑋)
272adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
28 toponuni 22857 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
298, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝑋 = 𝐽)
3027, 29eleqtrrd 2838 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
3130adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐴𝑋)
32 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝐺) = (-g𝐺)
335, 32grpsubcl 19008 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3425, 26, 31, 33syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3522, 34ffvelcdmd 7080 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻))
36 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
3719, 11, 36, 10tmdlactcn 24045 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ TopMnd ∧ (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻)) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
3821, 35, 37syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
39 simprrl 780 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑦𝐾)
40 cnima 23208 . . . . . . . . . . . . . . 15 (((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾) ∧ 𝑦𝐾) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4220, 41eqeltrrid 2840 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾)
43 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝐴) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)))
4443eleq1d 2820 . . . . . . . . . . . . . 14 (𝑤 = (𝐹𝐴) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦))
4522, 31ffvelcdmd 7080 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ (Base‘𝐻))
46 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (-g𝐻) = (-g𝐻)
475, 32, 46ghmsub 19212 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋𝐴𝑋) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4823, 26, 31, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4948oveq1d 7425 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)))
50 ghmgrp2 19207 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
5123, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ Grp)
5222, 26ffvelcdmd 7080 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ (Base‘𝐻))
5311, 36, 46grpnpcan 19020 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐻) ∧ (𝐹𝐴) ∈ (Base‘𝐻)) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5451, 52, 45, 53syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5549, 54eqtrd 2771 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
56 simprrr 781 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ 𝑦)
5755, 56eqeltrd 2835 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦)
5844, 45, 57elrabd 3678 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦})
59 cnpimaex 23199 . . . . . . . . . . . . 13 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾 ∧ (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
6018, 42, 58, 59syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
61 ssrab 4053 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹𝑧) ⊆ (Base‘𝐻) ∧ ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦))
6261simprbi 496 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦)
6322adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹:𝑋⟶(Base‘𝐻))
6463ffnd 6712 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹 Fn 𝑋)
658adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
66 toponss 22870 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
6765, 66sylan 580 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝑧𝑋)
68 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑣) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)))
6968eleq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑣) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7069ralima 7234 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑋𝑧𝑋) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7164, 67, 70syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7262, 71imbitrid 244 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
73 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))
7473mptpreima 6232 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}
75 simpl1 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺 ∈ TopMnd)
7675ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ TopMnd)
7725adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ Grp)
7831adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑋)
7926adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥𝑋)
805, 32grpsubcl 19008 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
8177, 78, 79, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
82 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (+g𝐺) = (+g𝐺)
8373, 5, 82, 4tmdlactcn 24045 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ TopMnd ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
8476, 81, 83syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
85 simprl 770 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑧𝐽)
86 cnima 23208 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8784, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8874, 87eqeltrrid 2840 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽)
89 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥))
9089eleq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑥 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 ↔ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
915, 82, 32grpnpcan 19020 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
9277, 78, 79, 91syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
93 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑧)
9492, 93eqeltrd 2835 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
9590, 79, 94elrabd 3678 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧})
96 simprrr 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦)
97 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (𝐹𝑣) = (𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
9897oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
9998eleq1d 2820 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10099rspccv 3603 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10196, 100syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
102101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10323adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10434adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
105103, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐺 ∈ Grp)
10631adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐴𝑋)
10726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑥𝑋)
108105, 106, 107, 80syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
109 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑤𝑋)
1105, 82grpcl 18929 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ Grp ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
111105, 108, 109, 110syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
1125, 82, 36ghmlin 19209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
113103, 104, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
114 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (invg𝐺) = (invg𝐺)
1155, 32, 114grpinvsub 19010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
116105, 107, 106, 115syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
117116oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)))
118 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0g𝐺) = (0g𝐺)
1195, 82, 118, 114grprinv 18978 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ Grp ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
120105, 104, 119syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
121117, 120eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)) = (0g𝐺))
122121oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((0g𝐺)(+g𝐺)𝑤))
1235, 82grpass 18930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ ((𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋)) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
124105, 104, 108, 109, 123syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
1255, 82, 118grplid 18955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
126105, 109, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
127122, 124, 1263eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = 𝑤)
128127fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
129113, 128eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
130129adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
131130eleq1d 2820 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
132102, 131sylibd 239 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
133132ralrimiva 3133 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
134 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
135134eleq1d 2820 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝐹𝑣) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
136135ralrab2 3686 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦 ↔ ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
137133, 136sylibr 234 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦)
13822adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
139138ffund 6715 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → Fun 𝐹)
140 ssrab2 4060 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ 𝑋
141138fdmd 6721 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → dom 𝐹 = 𝑋)
142140, 141sseqtrrid 4007 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹)
143 funimass4 6948 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
144139, 142, 143syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
145137, 144mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)
146 eleq2 2824 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝑥𝑢𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
147 imaeq2 6048 . . . . . . . . . . . . . . . . . . 19 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝐹𝑢) = (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
148147sseq1d 3995 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝐹𝑢) ⊆ 𝑦 ↔ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦))
149146, 148anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)))
150149rspcev 3606 . . . . . . . . . . . . . . . 16 (({𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽 ∧ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
15188, 95, 145, 150syl12anc 836 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
152151expr 456 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15372, 152sylan2d 605 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
154153rexlimdva 3142 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15560, 154mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
156155anassrs 467 . . . . . . . . . 10 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
157156expr 456 . . . . . . . . 9 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
158157ralrimiva 3133 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
1598adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
16013adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
161 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝑥𝑋)
162 iscnp 23180 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
163159, 160, 161, 162syl3anc 1373 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
16417, 158, 163mpbir2and 713 . . . . . . 7 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
165164ralrimiva 3133 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
166 cncnp 23223 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
1678, 13, 166syl2anc 584 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
16816, 165, 167mpbir2and 713 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ (𝐽 Cn 𝐾))
169168ex 412 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹 ∈ (𝐽 Cn 𝐾)))
1703, 169jcad 512 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1711cncnpi 23221 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
172171ancoms 458 . . 3 ((𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
173170, 172impbid1 225 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1747, 28syl 17 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝑋 = 𝐽)
175174eleq2d 2821 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐴𝑋𝐴 𝐽))
176175anbi1d 631 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → ((𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
177173, 176bitr4d 282 1 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  {crab 3420  wss 3931   cuni 4888  cmpt 5206  ccnv 5658  dom cdm 5659  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  TopOpenctopn 17440  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922  -gcsg 18923   GrpHom cghm 19200  TopOnctopon 22853   Cn ccn 23167   CnP ccnp 23168  TopMndctmd 24013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-0g 17460  df-topgen 17462  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-ghm 19201  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-tx 23505  df-tmd 24015
This theorem is referenced by:  qqhcn  34027
  Copyright terms: Public domain W3C validator