| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgsf | Structured version Visualization version GIF version | ||
| Description: Value of the auxiliary function 𝑆 defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
| efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
| efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| efgred.d | ⊢ 𝐷 = (𝑊 ∖ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| efgred.s | ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| Ref | Expression |
|---|---|
| efgsf | ⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝑚 = 𝑡 → 𝑚 = 𝑡) | |
| 2 | fveq2 6861 | . . . . . . 7 ⊢ (𝑚 = 𝑡 → (♯‘𝑚) = (♯‘𝑡)) | |
| 3 | 2 | oveq1d 7405 | . . . . . 6 ⊢ (𝑚 = 𝑡 → ((♯‘𝑚) − 1) = ((♯‘𝑡) − 1)) |
| 4 | 1, 3 | fveq12d 6868 | . . . . 5 ⊢ (𝑚 = 𝑡 → (𝑚‘((♯‘𝑚) − 1)) = (𝑡‘((♯‘𝑡) − 1))) |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑚 = 𝑡 → ((𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 ↔ (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊)) |
| 6 | 5 | ralrab2 3672 | . . 3 ⊢ (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 ↔ ∀𝑡 ∈ (Word 𝑊 ∖ {∅})(((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊)) |
| 7 | eldifi 4097 | . . . . . 6 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡 ∈ Word 𝑊) | |
| 8 | wrdf 14490 | . . . . . 6 ⊢ (𝑡 ∈ Word 𝑊 → 𝑡:(0..^(♯‘𝑡))⟶𝑊) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → 𝑡:(0..^(♯‘𝑡))⟶𝑊) |
| 10 | eldifsn 4753 | . . . . . . 7 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) ↔ (𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅)) | |
| 11 | lennncl 14506 | . . . . . . 7 ⊢ ((𝑡 ∈ Word 𝑊 ∧ 𝑡 ≠ ∅) → (♯‘𝑡) ∈ ℕ) | |
| 12 | 10, 11 | sylbi 217 | . . . . . 6 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (♯‘𝑡) ∈ ℕ) |
| 13 | fzo0end 13726 | . . . . . 6 ⊢ ((♯‘𝑡) ∈ ℕ → ((♯‘𝑡) − 1) ∈ (0..^(♯‘𝑡))) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → ((♯‘𝑡) − 1) ∈ (0..^(♯‘𝑡))) |
| 15 | 9, 14 | ffvelcdmd 7060 | . . . 4 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊) |
| 16 | 15 | a1d 25 | . . 3 ⊢ (𝑡 ∈ (Word 𝑊 ∖ {∅}) → (((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1)))) → (𝑡‘((♯‘𝑡) − 1)) ∈ 𝑊)) |
| 17 | 6, 16 | mprgbir 3052 | . 2 ⊢ ∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 |
| 18 | efgred.s | . . 3 ⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | |
| 19 | 18 | fmpt 7085 | . 2 ⊢ (∀𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} (𝑚‘((♯‘𝑚) − 1)) ∈ 𝑊 ↔ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊) |
| 20 | 17, 19 | mpbi 230 | 1 ⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∅c0 4299 {csn 4592 〈cop 4598 〈cotp 4600 ∪ ciun 4958 ↦ cmpt 5191 I cid 5535 × cxp 5639 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 1oc1o 8430 2oc2o 8431 0cc0 11075 1c1 11076 − cmin 11412 ℕcn 12193 ...cfz 13475 ..^cfzo 13622 ♯chash 14302 Word cword 14485 splice csplice 14721 〈“cs2 14814 ~FG cefg 19643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 |
| This theorem is referenced by: efgsdm 19667 efgsval 19668 efgsp1 19674 efgsfo 19676 efgredleme 19680 efgred 19685 |
| Copyright terms: Public domain | W3C validator |