![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgsf | Structured version Visualization version GIF version |
Description: Value of the auxiliary function π defining a sequence of extensions starting at some irreducible word. (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | β’ π = ( I βWord (πΌ Γ 2o)) |
efgval.r | β’ βΌ = ( ~FG βπΌ) |
efgval2.m | β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
efgval2.t | β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
efgred.d | β’ π· = (π β βͺ π₯ β π ran (πβπ₯)) |
efgred.s | β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
Ref | Expression |
---|---|
efgsf | β’ π:{π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 β’ (π = π‘ β π = π‘) | |
2 | fveq2 6892 | . . . . . . 7 β’ (π = π‘ β (β―βπ) = (β―βπ‘)) | |
3 | 2 | oveq1d 7428 | . . . . . 6 β’ (π = π‘ β ((β―βπ) β 1) = ((β―βπ‘) β 1)) |
4 | 1, 3 | fveq12d 6899 | . . . . 5 β’ (π = π‘ β (πβ((β―βπ) β 1)) = (π‘β((β―βπ‘) β 1))) |
5 | 4 | eleq1d 2816 | . . . 4 β’ (π = π‘ β ((πβ((β―βπ) β 1)) β π β (π‘β((β―βπ‘) β 1)) β π)) |
6 | 5 | ralrab2 3695 | . . 3 β’ (βπ β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} (πβ((β―βπ) β 1)) β π β βπ‘ β (Word π β {β })(((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1)))) β (π‘β((β―βπ‘) β 1)) β π)) |
7 | eldifi 4127 | . . . . . 6 β’ (π‘ β (Word π β {β }) β π‘ β Word π) | |
8 | wrdf 14475 | . . . . . 6 β’ (π‘ β Word π β π‘:(0..^(β―βπ‘))βΆπ) | |
9 | 7, 8 | syl 17 | . . . . 5 β’ (π‘ β (Word π β {β }) β π‘:(0..^(β―βπ‘))βΆπ) |
10 | eldifsn 4791 | . . . . . . 7 β’ (π‘ β (Word π β {β }) β (π‘ β Word π β§ π‘ β β )) | |
11 | lennncl 14490 | . . . . . . 7 β’ ((π‘ β Word π β§ π‘ β β ) β (β―βπ‘) β β) | |
12 | 10, 11 | sylbi 216 | . . . . . 6 β’ (π‘ β (Word π β {β }) β (β―βπ‘) β β) |
13 | fzo0end 13730 | . . . . . 6 β’ ((β―βπ‘) β β β ((β―βπ‘) β 1) β (0..^(β―βπ‘))) | |
14 | 12, 13 | syl 17 | . . . . 5 β’ (π‘ β (Word π β {β }) β ((β―βπ‘) β 1) β (0..^(β―βπ‘))) |
15 | 9, 14 | ffvelcdmd 7088 | . . . 4 β’ (π‘ β (Word π β {β }) β (π‘β((β―βπ‘) β 1)) β π) |
16 | 15 | a1d 25 | . . 3 β’ (π‘ β (Word π β {β }) β (((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1)))) β (π‘β((β―βπ‘) β 1)) β π)) |
17 | 6, 16 | mprgbir 3066 | . 2 β’ βπ β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} (πβ((β―βπ) β 1)) β π |
18 | efgred.s | . . 3 β’ π = (π β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) | |
19 | 18 | fmpt 7112 | . 2 β’ (βπ β {π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} (πβ((β―βπ) β 1)) β π β π:{π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ) |
20 | 17, 19 | mpbi 229 | 1 β’ π:{π‘ β (Word π β {β }) β£ ((π‘β0) β π· β§ βπ β (1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 βwral 3059 {crab 3430 β cdif 3946 β c0 4323 {csn 4629 β¨cop 4635 β¨cotp 4637 βͺ ciun 4998 β¦ cmpt 5232 I cid 5574 Γ cxp 5675 ran crn 5678 βΆwf 6540 βcfv 6544 (class class class)co 7413 β cmpo 7415 1oc1o 8463 2oc2o 8464 0cc0 11114 1c1 11115 β cmin 11450 βcn 12218 ...cfz 13490 ..^cfzo 13633 β―chash 14296 Word cword 14470 splice csplice 14705 β¨βcs2 14798 ~FG cefg 19617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-hash 14297 df-word 14471 |
This theorem is referenced by: efgsdm 19641 efgsval 19642 efgsp1 19648 efgsfo 19650 efgredleme 19654 efgred 19659 |
Copyright terms: Public domain | W3C validator |