MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapxpen Structured version   Visualization version   GIF version

Theorem mapxpen 9113
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
mapxpen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ≈ (𝐴m (𝐵 × 𝐶)))

Proof of Theorem mapxpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7425 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ∈ V)
2 ovexd 7425 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵 × 𝐶)) ∈ V)
3 elmapi 8825 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → 𝑓:𝐶⟶(𝐴m 𝐵))
43ffvelcdmda 7059 . . . . . . . . 9 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦) ∈ (𝐴m 𝐵))
5 elmapi 8825 . . . . . . . . 9 ((𝑓𝑦) ∈ (𝐴m 𝐵) → (𝑓𝑦):𝐵𝐴)
64, 5syl 17 . . . . . . . 8 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
76ffvelcdmda 7059 . . . . . . 7 (((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
87an32s 652 . . . . . 6 (((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑥𝐵) ∧ 𝑦𝐶) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
98ralrimiva 3126 . . . . 5 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑥𝐵) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
109ralrimiva 3126 . . . 4 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → ∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
11 eqid 2730 . . . . 5 (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
1211fmpo 8050 . . . 4 (∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴 ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
1310, 12sylib 218 . . 3 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
14 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
15 xpexg 7729 . . . . 5 ((𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
16153adant1 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
17 elmapg 8815 . . . 4 ((𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1814, 16, 17syl2anc 584 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1913, 18imbitrrid 246 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶))))
20 elmapi 8825 . . . . . . . . 9 (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
2120adantl 481 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
22 fovcdm 7562 . . . . . . . . . 10 ((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
23223expa 1118 . . . . . . . . 9 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵) ∧ 𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
2423an32s 652 . . . . . . . 8 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2521, 24sylanl1 680 . . . . . . 7 (((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2625fmpttd 7090 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
27 elmapg 8815 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
28273adant3 1132 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
2928ad2antrr 726 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
3026, 29mpbird 257 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵))
3130fmpttd 7090 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵))
3231ex 412 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
33 ovex 7423 . . . 4 (𝐴m 𝐵) ∈ V
34 simp3 1138 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
35 elmapg 8815 . . . 4 (((𝐴m 𝐵) ∈ V ∧ 𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
3633, 34, 35sylancr 587 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
3732, 36sylibrd 259 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶)))
38 elmapfn 8841 . . . . . . . 8 (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → 𝑔 Fn (𝐵 × 𝐶))
3938ad2antll 729 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 Fn (𝐵 × 𝐶))
40 fnov 7523 . . . . . . 7 (𝑔 Fn (𝐵 × 𝐶) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
4139, 40sylib 218 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
42 simp3 1138 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑦𝐶)
4326adantlrl 720 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
44433adant2 1131 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
45 simp1l2 1268 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐵𝑊)
46 simp1l1 1267 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐴𝑉)
47 fex2 7915 . . . . . . . . . . 11 (((𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴𝐵𝑊𝐴𝑉) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
4844, 45, 46, 47syl3anc 1373 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
49 eqid 2730 . . . . . . . . . . 11 (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5049fvmpt2 6982 . . . . . . . . . 10 ((𝑦𝐶 ∧ (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5142, 48, 50syl2anc 584 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5251fveq1d 6863 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥))
53 simp2 1137 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑥𝐵)
54 ovex 7423 . . . . . . . . 9 (𝑥𝑔𝑦) ∈ V
55 eqid 2730 . . . . . . . . . 10 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ (𝑥𝑔𝑦))
5655fvmpt2 6982 . . . . . . . . 9 ((𝑥𝐵 ∧ (𝑥𝑔𝑦) ∈ V) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5753, 54, 56sylancl 586 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5852, 57eqtrd 2765 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = (𝑥𝑔𝑦))
5958mpoeq3dva 7469 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
6041, 59eqtr4d 2768 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
61 eqid 2730 . . . . . . 7 𝐵 = 𝐵
62 nfcv 2892 . . . . . . . . . 10 𝑥𝐶
63 nfmpt1 5209 . . . . . . . . . 10 𝑥(𝑥𝐵 ↦ (𝑥𝑔𝑦))
6462, 63nfmpt 5208 . . . . . . . . 9 𝑥(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6564nfeq2 2910 . . . . . . . 8 𝑥 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
66 nfmpt1 5209 . . . . . . . . . . . 12 𝑦(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6766nfeq2 2910 . . . . . . . . . . 11 𝑦 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
68 fveq1 6860 . . . . . . . . . . . . 13 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑓𝑦) = ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦))
6968fveq1d 6863 . . . . . . . . . . . 12 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑦𝐶 → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7167, 70ralrimi 3236 . . . . . . . . . 10 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
72 eqid 2730 . . . . . . . . . 10 𝐶 = 𝐶
7371, 72jctil 519 . . . . . . . . 9 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7473a1d 25 . . . . . . . 8 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵 → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7565, 74ralrimi 3236 . . . . . . 7 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
76 mpoeq123 7464 . . . . . . 7 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7761, 75, 76sylancr 587 . . . . . 6 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7877eqeq2d 2741 . . . . 5 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7960, 78syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
803ad2antrl 728 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓:𝐶⟶(𝐴m 𝐵))
8180feqmptd 6932 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑓𝑦)))
82 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶))
8382, 6sylan 580 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
8483feqmptd 6932 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
8584mpteq2dva 5203 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑦𝐶 ↦ (𝑓𝑦)) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
8681, 85eqtrd 2765 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
87 nfmpo2 7473 . . . . . . . . 9 𝑦(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
8887nfeq2 2910 . . . . . . . 8 𝑦 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
89 eqidd 2731 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝐵 = 𝐵)
90 nfmpo1 7472 . . . . . . . . . . 11 𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
9190nfeq2 2910 . . . . . . . . . 10 𝑥 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
92 nfv 1914 . . . . . . . . . 10 𝑥 𝑦𝐶
93 fvex 6874 . . . . . . . . . . . . 13 ((𝑓𝑦)‘𝑥) ∈ V
9411ovmpt4g 7539 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶 ∧ ((𝑓𝑦)‘𝑥) ∈ V) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
9593, 94mp3an3 1452 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐶) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
96 oveq 7396 . . . . . . . . . . . . 13 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑥𝑔𝑦) = (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦))
9796eqeq1d 2732 . . . . . . . . . . . 12 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥) ↔ (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥)))
9895, 97imbitrrid 246 . . . . . . . . . . 11 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
9998expcomd 416 . . . . . . . . . 10 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥))))
10091, 92, 99ralrimd 3243 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
101 mpteq12 5198 . . . . . . . . 9 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
10289, 100, 101syl6an 684 . . . . . . . 8 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10388, 102ralrimi 3236 . . . . . . 7 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
104 mpteq12 5198 . . . . . . 7 ((𝐶 = 𝐶 ∧ ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10572, 103, 104sylancr 587 . . . . . 6 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
106105eqeq2d 2741 . . . . 5 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))))
10786, 106syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))))
10879, 107impbid 212 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
109108ex 412 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)))))
1101, 2, 19, 37, 109en3d 8963 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ≈ (𝐴m (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450   class class class wbr 5110  cmpt 5191   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-en 8922
This theorem is referenced by:  mappwen  10072  cfpwsdom  10544  rpnnen  16202  rexpen  16203  enrelmap  43993
  Copyright terms: Public domain W3C validator