MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapxpen Structured version   Visualization version   GIF version

Theorem mapxpen 8333
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
mapxpen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ≈ (𝐴𝑚 (𝐵 × 𝐶)))

Proof of Theorem mapxpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 6876 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∈ V)
2 ovexd 6876 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑚 (𝐵 × 𝐶)) ∈ V)
3 elmapi 8082 . . . . . . . . . 10 (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) → 𝑓:𝐶⟶(𝐴𝑚 𝐵))
43ffvelrnda 6549 . . . . . . . . 9 ((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦) ∈ (𝐴𝑚 𝐵))
5 elmapi 8082 . . . . . . . . 9 ((𝑓𝑦) ∈ (𝐴𝑚 𝐵) → (𝑓𝑦):𝐵𝐴)
64, 5syl 17 . . . . . . . 8 ((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
76ffvelrnda 6549 . . . . . . 7 (((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
87an32s 642 . . . . . 6 (((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑥𝐵) ∧ 𝑦𝐶) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
98ralrimiva 3113 . . . . 5 ((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑥𝐵) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
109ralrimiva 3113 . . . 4 (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) → ∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
11 eqid 2765 . . . . 5 (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
1211fmpt2 7438 . . . 4 (∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴 ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
1310, 12sylib 209 . . 3 (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
14 simp1 1166 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
15 xpexg 7158 . . . . 5 ((𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
16153adant1 1160 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
17 elmapg 8073 . . . 4 ((𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴𝑚 (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1814, 16, 17syl2anc 579 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴𝑚 (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1913, 18syl5ibr 237 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴𝑚 (𝐵 × 𝐶))))
20 elmapi 8082 . . . . . . . . 9 (𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
2120adantl 473 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
22 fovrn 7002 . . . . . . . . . 10 ((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
23223expa 1147 . . . . . . . . 9 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵) ∧ 𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
2423an32s 642 . . . . . . . 8 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2521, 24sylanl1 670 . . . . . . 7 (((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2625fmpttd 6575 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
27 elmapg 8073 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴𝑚 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
28273adant3 1162 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴𝑚 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
2928ad2antrr 717 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) ∧ 𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴𝑚 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
3026, 29mpbird 248 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴𝑚 𝐵))
3130fmpttd 6575 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴𝑚 𝐵))
3231ex 401 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴𝑚 𝐵)))
33 ovex 6874 . . . 4 (𝐴𝑚 𝐵) ∈ V
34 simp3 1168 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
35 elmapg 8073 . . . 4 (((𝐴𝑚 𝐵) ∈ V ∧ 𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴𝑚 𝐵)))
3633, 34, 35sylancr 581 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴𝑚 𝐵)))
3732, 36sylibrd 250 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶)))
38 elmapfn 8083 . . . . . . . 8 (𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)) → 𝑔 Fn (𝐵 × 𝐶))
3938ad2antll 720 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑔 Fn (𝐵 × 𝐶))
40 fnov 6966 . . . . . . 7 (𝑔 Fn (𝐵 × 𝐶) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
4139, 40sylib 209 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
42 simp3 1168 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑦𝐶)
4326adantlrl 711 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
44433adant2 1161 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
45 simp1l2 1366 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐵𝑊)
46 simp1l1 1365 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐴𝑉)
47 fex2 7319 . . . . . . . . . . 11 (((𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴𝐵𝑊𝐴𝑉) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
4844, 45, 46, 47syl3anc 1490 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
49 eqid 2765 . . . . . . . . . . 11 (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5049fvmpt2 6480 . . . . . . . . . 10 ((𝑦𝐶 ∧ (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5142, 48, 50syl2anc 579 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5251fveq1d 6377 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥))
53 simp2 1167 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑥𝐵)
54 ovex 6874 . . . . . . . . 9 (𝑥𝑔𝑦) ∈ V
55 eqid 2765 . . . . . . . . . 10 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ (𝑥𝑔𝑦))
5655fvmpt2 6480 . . . . . . . . 9 ((𝑥𝐵 ∧ (𝑥𝑔𝑦) ∈ V) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5753, 54, 56sylancl 580 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5852, 57eqtrd 2799 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = (𝑥𝑔𝑦))
5958mpt2eq3dva 6917 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
6041, 59eqtr4d 2802 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
61 eqid 2765 . . . . . . 7 𝐵 = 𝐵
62 nfcv 2907 . . . . . . . . . 10 𝑥𝐶
63 nfmpt1 4906 . . . . . . . . . 10 𝑥(𝑥𝐵 ↦ (𝑥𝑔𝑦))
6462, 63nfmpt 4905 . . . . . . . . 9 𝑥(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6564nfeq2 2923 . . . . . . . 8 𝑥 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
66 nfmpt1 4906 . . . . . . . . . . . 12 𝑦(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6766nfeq2 2923 . . . . . . . . . . 11 𝑦 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
68 fveq1 6374 . . . . . . . . . . . . 13 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑓𝑦) = ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦))
6968fveq1d 6377 . . . . . . . . . . . 12 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑦𝐶 → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7167, 70ralrimi 3104 . . . . . . . . . 10 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
72 eqid 2765 . . . . . . . . . 10 𝐶 = 𝐶
7371, 72jctil 515 . . . . . . . . 9 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7473a1d 25 . . . . . . . 8 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵 → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7565, 74ralrimi 3104 . . . . . . 7 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
76 mpt2eq123 6912 . . . . . . 7 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7761, 75, 76sylancr 581 . . . . . 6 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7877eqeq2d 2775 . . . . 5 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7960, 78syl5ibrcom 238 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
803ad2antrl 719 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑓:𝐶⟶(𝐴𝑚 𝐵))
8180feqmptd 6438 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑓𝑦)))
82 simprl 787 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶))
8382, 6sylan 575 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
8483feqmptd 6438 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
8584mpteq2dva 4903 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → (𝑦𝐶 ↦ (𝑓𝑦)) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
8681, 85eqtrd 2799 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
87 nfmpt22 6921 . . . . . . . . 9 𝑦(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
8887nfeq2 2923 . . . . . . . 8 𝑦 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
89 eqidd 2766 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝐵 = 𝐵)
90 nfmpt21 6920 . . . . . . . . . . 11 𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
9190nfeq2 2923 . . . . . . . . . 10 𝑥 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
92 nfv 2009 . . . . . . . . . 10 𝑥 𝑦𝐶
93 fvex 6388 . . . . . . . . . . . . 13 ((𝑓𝑦)‘𝑥) ∈ V
9411ovmpt4g 6981 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶 ∧ ((𝑓𝑦)‘𝑥) ∈ V) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
9593, 94mp3an3 1574 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐶) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
96 oveq 6848 . . . . . . . . . . . . 13 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑥𝑔𝑦) = (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦))
9796eqeq1d 2767 . . . . . . . . . . . 12 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥) ↔ (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥)))
9895, 97syl5ibr 237 . . . . . . . . . . 11 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
9998expcomd 406 . . . . . . . . . 10 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥))))
10091, 92, 99ralrimd 3106 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
101 mpteq12 4895 . . . . . . . . 9 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
10289, 100, 101syl6an 674 . . . . . . . 8 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10388, 102ralrimi 3104 . . . . . . 7 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
104 mpteq12 4895 . . . . . . 7 ((𝐶 = 𝐶 ∧ ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10572, 103, 104sylancr 581 . . . . . 6 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
106105eqeq2d 2775 . . . . 5 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))))
10786, 106syl5ibrcom 238 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))))
10879, 107impbid 203 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
109108ex 401 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑓 ∈ ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ∧ 𝑔 ∈ (𝐴𝑚 (𝐵 × 𝐶))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)))))
1101, 2, 19, 37, 109en3d 8197 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝑚 𝐵) ↑𝑚 𝐶) ≈ (𝐴𝑚 (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350   class class class wbr 4809  cmpt 4888   × cxp 5275   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  𝑚 cmap 8060  cen 8157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-map 8062  df-en 8161
This theorem is referenced by:  mappwen  9186  cfpwsdom  9659  rpnnen  15240  rexpen  15241  enrelmap  38897
  Copyright terms: Public domain W3C validator