| Step | Hyp | Ref
| Expression |
| 1 | | ovexd 7466 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ∈ V) |
| 2 | | ovexd 7466 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑m (𝐵 × 𝐶)) ∈ V) |
| 3 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) → 𝑓:𝐶⟶(𝐴 ↑m 𝐵)) |
| 4 | 3 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦) ∈ (𝐴 ↑m 𝐵)) |
| 5 | | elmapi 8889 |
. . . . . . . . 9
⊢ ((𝑓‘𝑦) ∈ (𝐴 ↑m 𝐵) → (𝑓‘𝑦):𝐵⟶𝐴) |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ ((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦):𝐵⟶𝐴) |
| 7 | 6 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) |
| 8 | 7 | an32s 652 |
. . . . . 6
⊢ (((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) |
| 9 | 8 | ralrimiva 3146 |
. . . . 5
⊢ ((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) |
| 10 | 9 | ralrimiva 3146 |
. . . 4
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴) |
| 11 | | eqid 2737 |
. . . . 5
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) |
| 12 | 11 | fmpo 8093 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) ∈ 𝐴 ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴) |
| 13 | 10, 12 | sylib 218 |
. . 3
⊢ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴) |
| 14 | | simp1 1137 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ 𝑉) |
| 15 | | xpexg 7770 |
. . . . 5
⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) |
| 16 | 15 | 3adant1 1131 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐵 × 𝐶) ∈ V) |
| 17 | | elmapg 8879 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ∈ (𝐴 ↑m (𝐵 × 𝐶)) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)) |
| 18 | 14, 16, 17 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ∈ (𝐴 ↑m (𝐵 × 𝐶)) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)) |
| 19 | 13, 18 | imbitrrid 246 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ∈ (𝐴 ↑m (𝐵 × 𝐶)))) |
| 20 | | elmapi 8889 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)) → 𝑔:(𝐵 × 𝐶)⟶𝐴) |
| 21 | 20 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) → 𝑔:(𝐵 × 𝐶)⟶𝐴) |
| 22 | | fovcdm 7603 |
. . . . . . . . . 10
⊢ ((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) ∈ 𝐴) |
| 23 | 22 | 3expa 1119 |
. . . . . . . . 9
⊢ (((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) ∈ 𝐴) |
| 24 | 23 | an32s 652 |
. . . . . . . 8
⊢ (((𝑔:(𝐵 × 𝐶)⟶𝐴 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → (𝑥𝑔𝑦) ∈ 𝐴) |
| 25 | 21, 24 | sylanl1 680 |
. . . . . . 7
⊢
(((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ∈ 𝐵) → (𝑥𝑔𝑦) ∈ 𝐴) |
| 26 | 25 | fmpttd 7135 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) |
| 27 | | elmapg 8879 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑m 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) |
| 28 | 27 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑m 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) |
| 29 | 28 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑m 𝐵) ↔ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴)) |
| 30 | 26, 29 | mpbird 257 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴 ↑m 𝐵)) |
| 31 | 30 | fmpttd 7135 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑m 𝐵)) |
| 32 | 31 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑m 𝐵))) |
| 33 | | ovex 7464 |
. . . 4
⊢ (𝐴 ↑m 𝐵) ∈ V |
| 34 | | simp3 1139 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) |
| 35 | | elmapg 8879 |
. . . 4
⊢ (((𝐴 ↑m 𝐵) ∈ V ∧ 𝐶 ∈ 𝑋) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ↔ (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑m 𝐵))) |
| 36 | 33, 34, 35 | sylancr 587 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ↔ (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴 ↑m 𝐵))) |
| 37 | 32, 36 | sylibrd 259 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶))) |
| 38 | | elmapfn 8905 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)) → 𝑔 Fn (𝐵 × 𝐶)) |
| 39 | 38 | ad2antll 729 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑔 Fn (𝐵 × 𝐶)) |
| 40 | | fnov 7564 |
. . . . . . 7
⊢ (𝑔 Fn (𝐵 × 𝐶) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) |
| 41 | 39, 40 | sylib 218 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) |
| 42 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐶) |
| 43 | 26 | adantlrl 720 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) |
| 44 | 43 | 3adant2 1132 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴) |
| 45 | | simp1l2 1268 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝐵 ∈ 𝑊) |
| 46 | | simp1l1 1267 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
| 47 | | fex2 7958 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)):𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) |
| 48 | 44, 45, 46, 47 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) |
| 49 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 50 | 49 | fvmpt2 7027 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐶 ∧ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 51 | 42, 48, 50 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 52 | 51 | fveq1d 6908 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥)) |
| 53 | | simp2 1138 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝑥 ∈ 𝐵) |
| 54 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝑥𝑔𝑦) ∈ V |
| 55 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) |
| 56 | 55 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥𝑔𝑦) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦)) |
| 57 | 53, 54, 56 | sylancl 586 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦)) |
| 58 | 52, 57 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = (𝑥𝑔𝑦)) |
| 59 | 58 | mpoeq3dva 7510 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑔𝑦))) |
| 60 | 41, 59 | eqtr4d 2780 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 61 | | eqid 2737 |
. . . . . . 7
⊢ 𝐵 = 𝐵 |
| 62 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐶 |
| 63 | | nfmpt1 5250 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) |
| 64 | 62, 63 | nfmpt 5249 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 65 | 64 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 66 | | nfmpt1 5250 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦(𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 67 | 66 | nfeq2 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) |
| 68 | | fveq1 6905 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑓‘𝑦) = ((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)) |
| 69 | 68 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) |
| 70 | 69 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑦 ∈ 𝐶 → ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 71 | 67, 70 | ralrimi 3257 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) |
| 72 | | eqid 2737 |
. . . . . . . . . 10
⊢ 𝐶 = 𝐶 |
| 73 | 71, 72 | jctil 519 |
. . . . . . . . 9
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 74 | 73 | a1d 25 |
. . . . . . . 8
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥 ∈ 𝐵 → (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))) |
| 75 | 65, 74 | ralrimi 3257 |
. . . . . . 7
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑥 ∈ 𝐵 (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 76 | | mpoeq123 7505 |
. . . . . . 7
⊢ ((𝐵 = 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 ((𝑓‘𝑦)‘𝑥) = (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 77 | 61, 75, 76 | sylancr 587 |
. . . . . 6
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) |
| 78 | 77 | eqeq2d 2748 |
. . . . 5
⊢ (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (((𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))) |
| 79 | 60, 78 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) → 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 80 | 3 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑓:𝐶⟶(𝐴 ↑m 𝐵)) |
| 81 | 80 | feqmptd 6977 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑓‘𝑦))) |
| 82 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶)) |
| 83 | 82, 6 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦):𝐵⟶𝐴) |
| 84 | 83 | feqmptd 6977 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) ∧ 𝑦 ∈ 𝐶) → (𝑓‘𝑦) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) |
| 85 | 84 | mpteq2dva 5242 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → (𝑦 ∈ 𝐶 ↦ (𝑓‘𝑦)) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 86 | 81, 85 | eqtrd 2777 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 87 | | nfmpo2 7514 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) |
| 88 | 87 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑦 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) |
| 89 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → 𝐵 = 𝐵) |
| 90 | | nfmpo1 7513 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) |
| 91 | 90 | nfeq2 2923 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) |
| 92 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐶 |
| 93 | | fvex 6919 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑦)‘𝑥) ∈ V |
| 94 | 11 | ovmpt4g 7580 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ∧ ((𝑓‘𝑦)‘𝑥) ∈ V) → (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥)) |
| 95 | 93, 94 | mp3an3 1452 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥)) |
| 96 | | oveq 7437 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑥𝑔𝑦) = (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦)) |
| 97 | 96 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ((𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥) ↔ (𝑥(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))𝑦) = ((𝑓‘𝑦)‘𝑥))) |
| 98 | 95, 97 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥))) |
| 99 | 98 | expcomd 416 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → (𝑥 ∈ 𝐵 → (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥)))) |
| 100 | 91, 92, 99 | ralrimd 3264 |
. . . . . . . . 9
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → ∀𝑥 ∈ 𝐵 (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥))) |
| 101 | | mpteq12 5234 |
. . . . . . . . 9
⊢ ((𝐵 = 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑥𝑔𝑦) = ((𝑓‘𝑦)‘𝑥)) → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) |
| 102 | 89, 100, 101 | syl6an 684 |
. . . . . . . 8
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 103 | 88, 102 | ralrimi 3257 |
. . . . . . 7
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → ∀𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) |
| 104 | | mpteq12 5234 |
. . . . . . 7
⊢ ((𝐶 = 𝐶 ∧ ∀𝑦 ∈ 𝐶 (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 105 | 72, 103, 104 | sylancr 587 |
. . . . . 6
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 106 | 105 | eqeq2d 2748 |
. . . . 5
⊢ (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ ((𝑓‘𝑦)‘𝑥))))) |
| 107 | 86, 106 | syl5ibrcom 247 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → (𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)) → 𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))))) |
| 108 | 79, 107 | impbid 212 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶)))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥)))) |
| 109 | 108 | ex 412 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑓 ∈ ((𝐴 ↑m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴 ↑m (𝐵 × 𝐶))) → (𝑓 = (𝑦 ∈ 𝐶 ↦ (𝑥 ∈ 𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ ((𝑓‘𝑦)‘𝑥))))) |
| 110 | 1, 2, 19, 37, 109 | en3d 9029 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ≈ (𝐴 ↑m (𝐵 × 𝐶))) |