MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapxpen Structured version   Visualization version   GIF version

Theorem mapxpen 9209
Description: Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
mapxpen ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ≈ (𝐴m (𝐵 × 𝐶)))

Proof of Theorem mapxpen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7483 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ∈ V)
2 ovexd 7483 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴m (𝐵 × 𝐶)) ∈ V)
3 elmapi 8907 . . . . . . . . . 10 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → 𝑓:𝐶⟶(𝐴m 𝐵))
43ffvelcdmda 7118 . . . . . . . . 9 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦) ∈ (𝐴m 𝐵))
5 elmapi 8907 . . . . . . . . 9 ((𝑓𝑦) ∈ (𝐴m 𝐵) → (𝑓𝑦):𝐵𝐴)
64, 5syl 17 . . . . . . . 8 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
76ffvelcdmda 7118 . . . . . . 7 (((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
87an32s 651 . . . . . 6 (((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑥𝐵) ∧ 𝑦𝐶) → ((𝑓𝑦)‘𝑥) ∈ 𝐴)
98ralrimiva 3152 . . . . 5 ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑥𝐵) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
109ralrimiva 3152 . . . 4 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → ∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴)
11 eqid 2740 . . . . 5 (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
1211fmpo 8109 . . . 4 (∀𝑥𝐵𝑦𝐶 ((𝑓𝑦)‘𝑥) ∈ 𝐴 ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
1310, 12sylib 218 . . 3 (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴)
14 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐴𝑉)
15 xpexg 7785 . . . . 5 ((𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
16153adant1 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐵 × 𝐶) ∈ V)
17 elmapg 8897 . . . 4 ((𝐴𝑉 ∧ (𝐵 × 𝐶) ∈ V) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1814, 16, 17syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶)) ↔ (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)):(𝐵 × 𝐶)⟶𝐴))
1913, 18imbitrrid 246 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ∈ (𝐴m (𝐵 × 𝐶))))
20 elmapi 8907 . . . . . . . . 9 (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
2120adantl 481 . . . . . . . 8 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → 𝑔:(𝐵 × 𝐶)⟶𝐴)
22 fovcdm 7620 . . . . . . . . . 10 ((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
23223expa 1118 . . . . . . . . 9 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑥𝐵) ∧ 𝑦𝐶) → (𝑥𝑔𝑦) ∈ 𝐴)
2423an32s 651 . . . . . . . 8 (((𝑔:(𝐵 × 𝐶)⟶𝐴𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2521, 24sylanl1 679 . . . . . . 7 (((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) ∧ 𝑥𝐵) → (𝑥𝑔𝑦) ∈ 𝐴)
2625fmpttd 7149 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
27 elmapg 8897 . . . . . . . 8 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
28273adant3 1132 . . . . . . 7 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
2928ad2antrr 725 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵) ↔ (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴))
3026, 29mpbird 257 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ (𝐴m 𝐵))
3130fmpttd 7149 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵))
3231ex 412 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
33 ovex 7481 . . . 4 (𝐴m 𝐵) ∈ V
34 simp3 1138 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝐶𝑋)
35 elmapg 8897 . . . 4 (((𝐴m 𝐵) ∈ V ∧ 𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
3633, 34, 35sylancr 586 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶) ↔ (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))):𝐶⟶(𝐴m 𝐵)))
3732, 36sylibrd 259 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ∈ ((𝐴m 𝐵) ↑m 𝐶)))
38 elmapfn 8923 . . . . . . . 8 (𝑔 ∈ (𝐴m (𝐵 × 𝐶)) → 𝑔 Fn (𝐵 × 𝐶))
3938ad2antll 728 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 Fn (𝐵 × 𝐶))
40 fnov 7581 . . . . . . 7 (𝑔 Fn (𝐵 × 𝐶) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
4139, 40sylib 218 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
42 simp3 1138 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑦𝐶)
4326adantlrl 719 . . . . . . . . . . . 12 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
44433adant2 1131 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴)
45 simp1l2 1267 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐵𝑊)
46 simp1l1 1266 . . . . . . . . . . 11 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝐴𝑉)
47 fex2 7974 . . . . . . . . . . 11 (((𝑥𝐵 ↦ (𝑥𝑔𝑦)):𝐵𝐴𝐵𝑊𝐴𝑉) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
4844, 45, 46, 47syl3anc 1371 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V)
49 eqid 2740 . . . . . . . . . . 11 (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5049fvmpt2 7040 . . . . . . . . . 10 ((𝑦𝐶 ∧ (𝑥𝐵 ↦ (𝑥𝑔𝑦)) ∈ V) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5142, 48, 50syl2anc 583 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦) = (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
5251fveq1d 6922 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥))
53 simp2 1137 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → 𝑥𝐵)
54 ovex 7481 . . . . . . . . 9 (𝑥𝑔𝑦) ∈ V
55 eqid 2740 . . . . . . . . . 10 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ (𝑥𝑔𝑦))
5655fvmpt2 7040 . . . . . . . . 9 ((𝑥𝐵 ∧ (𝑥𝑔𝑦) ∈ V) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5753, 54, 56sylancl 585 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → ((𝑥𝐵 ↦ (𝑥𝑔𝑦))‘𝑥) = (𝑥𝑔𝑦))
5852, 57eqtrd 2780 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑥𝐵𝑦𝐶) → (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥) = (𝑥𝑔𝑦))
5958mpoeq3dva 7527 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (𝑥𝑔𝑦)))
6041, 59eqtr4d 2783 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
61 eqid 2740 . . . . . . 7 𝐵 = 𝐵
62 nfcv 2908 . . . . . . . . . 10 𝑥𝐶
63 nfmpt1 5274 . . . . . . . . . 10 𝑥(𝑥𝐵 ↦ (𝑥𝑔𝑦))
6462, 63nfmpt 5273 . . . . . . . . 9 𝑥(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6564nfeq2 2926 . . . . . . . 8 𝑥 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
66 nfmpt1 5274 . . . . . . . . . . . 12 𝑦(𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
6766nfeq2 2926 . . . . . . . . . . 11 𝑦 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))
68 fveq1 6919 . . . . . . . . . . . . 13 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑓𝑦) = ((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦))
6968fveq1d 6922 . . . . . . . . . . . 12 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
7069a1d 25 . . . . . . . . . . 11 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑦𝐶 → ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7167, 70ralrimi 3263 . . . . . . . . . 10 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))
72 eqid 2740 . . . . . . . . . 10 𝐶 = 𝐶
7371, 72jctil 519 . . . . . . . . 9 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7473a1d 25 . . . . . . . 8 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵 → (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7565, 74ralrimi 3263 . . . . . . 7 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
76 mpoeq123 7522 . . . . . . 7 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝐶 = 𝐶 ∧ ∀𝑦𝐶 ((𝑓𝑦)‘𝑥) = (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7761, 75, 76sylancr 586 . . . . . 6 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥)))
7877eqeq2d 2751 . . . . 5 (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ (((𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))‘𝑦)‘𝑥))))
7960, 78syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) → 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
803ad2antrl 727 . . . . . . 7 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓:𝐶⟶(𝐴m 𝐵))
8180feqmptd 6990 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑓𝑦)))
82 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶))
8382, 6sylan 579 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦):𝐵𝐴)
8483feqmptd 6990 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) ∧ 𝑦𝐶) → (𝑓𝑦) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
8584mpteq2dva 5266 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑦𝐶 ↦ (𝑓𝑦)) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
8681, 85eqtrd 2780 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
87 nfmpo2 7531 . . . . . . . . 9 𝑦(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
8887nfeq2 2926 . . . . . . . 8 𝑦 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
89 eqidd 2741 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝐵 = 𝐵)
90 nfmpo1 7530 . . . . . . . . . . 11 𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
9190nfeq2 2926 . . . . . . . . . 10 𝑥 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))
92 nfv 1913 . . . . . . . . . 10 𝑥 𝑦𝐶
93 fvex 6933 . . . . . . . . . . . . 13 ((𝑓𝑦)‘𝑥) ∈ V
9411ovmpt4g 7597 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐶 ∧ ((𝑓𝑦)‘𝑥) ∈ V) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
9593, 94mp3an3 1450 . . . . . . . . . . . 12 ((𝑥𝐵𝑦𝐶) → (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥))
96 oveq 7454 . . . . . . . . . . . . 13 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑥𝑔𝑦) = (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦))
9796eqeq1d 2742 . . . . . . . . . . . 12 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥) ↔ (𝑥(𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))𝑦) = ((𝑓𝑦)‘𝑥)))
9895, 97imbitrrid 246 . . . . . . . . . . 11 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ((𝑥𝐵𝑦𝐶) → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
9998expcomd 416 . . . . . . . . . 10 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 → (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥))))
10091, 92, 99ralrimd 3270 . . . . . . . . 9 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)))
101 mpteq12 5258 . . . . . . . . 9 ((𝐵 = 𝐵 ∧ ∀𝑥𝐵 (𝑥𝑔𝑦) = ((𝑓𝑦)‘𝑥)) → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
10289, 100, 101syl6an 683 . . . . . . . 8 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 → (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10388, 102ralrimi 3263 . . . . . . 7 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))
104 mpteq12 5258 . . . . . . 7 ((𝐶 = 𝐶 ∧ ∀𝑦𝐶 (𝑥𝐵 ↦ (𝑥𝑔𝑦)) = (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
10572, 103, 104sylancr 586 . . . . . 6 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥))))
106105eqeq2d 2751 . . . . 5 (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ ((𝑓𝑦)‘𝑥)))))
10786, 106syl5ibrcom 247 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)) → 𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦)))))
10879, 107impbid 212 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶)))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥))))
109108ex 412 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝑓 ∈ ((𝐴m 𝐵) ↑m 𝐶) ∧ 𝑔 ∈ (𝐴m (𝐵 × 𝐶))) → (𝑓 = (𝑦𝐶 ↦ (𝑥𝐵 ↦ (𝑥𝑔𝑦))) ↔ 𝑔 = (𝑥𝐵, 𝑦𝐶 ↦ ((𝑓𝑦)‘𝑥)))))
1101, 2, 19, 37, 109en3d 9049 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴m 𝐵) ↑m 𝐶) ≈ (𝐴m (𝐵 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004
This theorem is referenced by:  mappwen  10181  cfpwsdom  10653  rpnnen  16275  rexpen  16276  enrelmap  43959
  Copyright terms: Public domain W3C validator