| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | setrec1lem2.3 | . . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑌) | 
| 2 |  | dfss3 3971 | . . . . . . 7
⊢ (𝑋 ⊆ 𝑌 ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌) | 
| 3 | 1, 2 | sylib 218 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌) | 
| 4 |  | setrec1lem2.1 | . . . . . . . 8
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 5 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 6 | 5 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 𝑥 ∈ V) | 
| 7 | 4, 6 | setrec1lem1 49261 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 8 | 7 | ralbidv 3177 | . . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ↔ ∀𝑥 ∈ 𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 9 | 3, 8 | mpbid 232 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) | 
| 10 |  | ralcom4 3285 | . . . . 5
⊢
(∀𝑥 ∈
𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) ↔ ∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) | 
| 11 | 9, 10 | sylib 218 | . . . 4
⊢ (𝜑 → ∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) | 
| 12 |  | nfra1 3283 | . . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) | 
| 13 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑥∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) | 
| 14 |  | rsp 3246 | . . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 15 |  | elssuni 4936 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → 𝑥 ⊆ ∪ 𝑋) | 
| 16 |  | sstr2 3989 | . . . . . . . . . . . 12
⊢ (𝑤 ⊆ 𝑥 → (𝑥 ⊆ ∪ 𝑋 → 𝑤 ⊆ ∪ 𝑋)) | 
| 17 | 15, 16 | syl5com 31 | . . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (𝑤 ⊆ 𝑥 → 𝑤 ⊆ ∪ 𝑋)) | 
| 18 | 17 | imim1d 82 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → ((𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)))) | 
| 19 | 18 | alimdv 1915 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)))) | 
| 20 | 19 | imim1d 82 | . . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → ((∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 21 | 14, 20 | sylcom 30 | . . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 22 | 21 | com23 86 | . . . . . 6
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑥 ∈ 𝑋 → 𝑥 ⊆ 𝑧))) | 
| 23 | 12, 13, 22 | ralrimd 3263 | . . . . 5
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) | 
| 24 | 23 | alimi 1810 | . . . 4
⊢
(∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) | 
| 25 | 11, 24 | syl 17 | . . 3
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) | 
| 26 |  | unissb 4938 | . . . . 5
⊢ (∪ 𝑋
⊆ 𝑧 ↔
∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧) | 
| 27 | 26 | imbi2i 336 | . . . 4
⊢
((∀𝑤(𝑤 ⊆ ∪ 𝑋
→ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) | 
| 28 | 27 | albii 1818 | . . 3
⊢
(∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) | 
| 29 | 25, 28 | sylibr 234 | . 2
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧)) | 
| 30 |  | setrec1lem2.2 | . . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 31 | 30 | uniexd 7763 | . . 3
⊢ (𝜑 → ∪ 𝑋
∈ V) | 
| 32 | 4, 31 | setrec1lem1 49261 | . 2
⊢ (𝜑 → (∪ 𝑋
∈ 𝑌 ↔
∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧))) | 
| 33 | 29, 32 | mpbird 257 | 1
⊢ (𝜑 → ∪ 𝑋
∈ 𝑌) |