| Step | Hyp | Ref
| Expression |
| 1 | | setrec1lem2.3 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| 2 | | dfss3 3938 |
. . . . . . 7
⊢ (𝑋 ⊆ 𝑌 ↔ ∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌) |
| 3 | 1, 2 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌) |
| 4 | | setrec1lem2.1 |
. . . . . . . 8
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 5 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑥 ∈ V) |
| 7 | 4, 6 | setrec1lem1 49680 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
| 8 | 7 | ralbidv 3157 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝑥 ∈ 𝑌 ↔ ∀𝑥 ∈ 𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
| 9 | 3, 8 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) |
| 10 | | ralcom4 3264 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) ↔ ∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) |
| 11 | 9, 10 | sylib 218 |
. . . 4
⊢ (𝜑 → ∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) |
| 12 | | nfra1 3262 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) |
| 13 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
| 14 | | rsp 3226 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
| 15 | | elssuni 4904 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 → 𝑥 ⊆ ∪ 𝑋) |
| 16 | | sstr2 3956 |
. . . . . . . . . . . 12
⊢ (𝑤 ⊆ 𝑥 → (𝑥 ⊆ ∪ 𝑋 → 𝑤 ⊆ ∪ 𝑋)) |
| 17 | 15, 16 | syl5com 31 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → (𝑤 ⊆ 𝑥 → 𝑤 ⊆ ∪ 𝑋)) |
| 18 | 17 | imim1d 82 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → ((𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)))) |
| 19 | 18 | alimdv 1916 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)))) |
| 20 | 19 | imim1d 82 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑋 → ((∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
| 21 | 14, 20 | sylcom 30 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (𝑥 ∈ 𝑋 → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) |
| 22 | 21 | com23 86 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑥 ∈ 𝑋 → 𝑥 ⊆ 𝑧))) |
| 23 | 12, 13, 22 | ralrimd 3243 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) |
| 24 | 23 | alimi 1811 |
. . . 4
⊢
(∀𝑧∀𝑥 ∈ 𝑋 (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) |
| 25 | 11, 24 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) |
| 26 | | unissb 4906 |
. . . . 5
⊢ (∪ 𝑋
⊆ 𝑧 ↔
∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧) |
| 27 | 26 | imbi2i 336 |
. . . 4
⊢
((∀𝑤(𝑤 ⊆ ∪ 𝑋
→ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) |
| 28 | 27 | albii 1819 |
. . 3
⊢
(∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑥 ∈ 𝑋 𝑥 ⊆ 𝑧)) |
| 29 | 25, 28 | sylibr 234 |
. 2
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧)) |
| 30 | | setrec1lem2.2 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 31 | 30 | uniexd 7721 |
. . 3
⊢ (𝜑 → ∪ 𝑋
∈ V) |
| 32 | 4, 31 | setrec1lem1 49680 |
. 2
⊢ (𝜑 → (∪ 𝑋
∈ 𝑌 ↔
∀𝑧(∀𝑤(𝑤 ⊆ ∪ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∪ 𝑋 ⊆ 𝑧))) |
| 33 | 29, 32 | mpbird 257 |
1
⊢ (𝜑 → ∪ 𝑋
∈ 𝑌) |