| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑥𝜑 |
| 2 | | flift.1 |
. . . . 5
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| 3 | | nfmpt1 5250 |
. . . . . 6
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| 4 | 3 | nfrn 5963 |
. . . . 5
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| 5 | 2, 4 | nfcxfr 2903 |
. . . 4
⊢
Ⅎ𝑥𝐹 |
| 6 | 5 | nffun 6589 |
. . 3
⊢
Ⅎ𝑥Fun 𝐹 |
| 7 | | fveq2 6906 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → (𝐹‘𝐴) = (𝐹‘𝐶)) |
| 8 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → Fun 𝐹) |
| 9 | | flift.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| 10 | | flift.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| 11 | 2, 9, 10 | fliftel1 7330 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴𝐹𝐵) |
| 12 | 11 | ad2ant2r 747 |
. . . . . . . . 9
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴𝐹𝐵) |
| 13 | | funbrfv 6957 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) |
| 14 | 8, 12, 13 | sylc 65 |
. . . . . . . 8
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝐴) = 𝐵) |
| 15 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 16 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐶 = 𝐶) |
| 17 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐷 = 𝐷) |
| 18 | | fliftfun.4 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐶) |
| 19 | 18 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐶 = 𝐴 ↔ 𝐶 = 𝐶)) |
| 20 | | fliftfun.5 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐷) |
| 21 | 20 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐷 = 𝐵 ↔ 𝐷 = 𝐷)) |
| 22 | 19, 21 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷))) |
| 23 | 22 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑋 ∧ (𝐶 = 𝐶 ∧ 𝐷 = 𝐷)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 24 | 15, 16, 17, 23 | syl12anc 837 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
| 25 | 2, 9, 10 | fliftel 7329 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 27 | 24, 26 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐶𝐹𝐷) |
| 28 | | funbrfv 6957 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝐶𝐹𝐷 → (𝐹‘𝐶) = 𝐷)) |
| 29 | 8, 27, 28 | sylc 65 |
. . . . . . . 8
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘𝐶) = 𝐷) |
| 30 | 14, 29 | eqeq12d 2753 |
. . . . . . 7
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐵 = 𝐷)) |
| 31 | 7, 30 | imbitrid 244 |
. . . . . 6
⊢ (((𝜑 ∧ Fun 𝐹) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 32 | 31 | anassrs 467 |
. . . . 5
⊢ ((((𝜑 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 33 | 32 | ralrimiva 3146 |
. . . 4
⊢ (((𝜑 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷)) |
| 34 | 33 | exp31 419 |
. . 3
⊢ (𝜑 → (Fun 𝐹 → (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷)))) |
| 35 | 1, 6, 34 | ralrimd 3264 |
. 2
⊢ (𝜑 → (Fun 𝐹 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷))) |
| 36 | 2, 9, 10 | fliftel 7329 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧𝐹𝑢 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑢 = 𝐵))) |
| 37 | 2, 9, 10 | fliftel 7329 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧𝐹𝑣 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑣 = 𝐵))) |
| 38 | 18 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑧 = 𝐴 ↔ 𝑧 = 𝐶)) |
| 39 | 20 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑣 = 𝐵 ↔ 𝑣 = 𝐷)) |
| 40 | 38, 39 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑣 = 𝐵) ↔ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) |
| 41 | 40 | cbvrexvw 3238 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 (𝑧 = 𝐴 ∧ 𝑣 = 𝐵) ↔ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) |
| 42 | 37, 41 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧𝐹𝑣 ↔ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) |
| 43 | 36, 42 | anbi12d 632 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) ↔ (∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)))) |
| 44 | 43 | biimpd 229 |
. . . . . . 7
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → (∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)))) |
| 45 | | reeanv 3229 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) ↔ (∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) |
| 46 | | r19.29 3114 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → ∃𝑥 ∈ 𝑋 (∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)))) |
| 47 | | r19.29 3114 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → ∃𝑦 ∈ 𝑋 ((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)))) |
| 48 | | eqtr2 2761 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 𝐴 ∧ 𝑧 = 𝐶) → 𝐴 = 𝐶) |
| 49 | 48 | ad2ant2r 747 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) → 𝐴 = 𝐶) |
| 50 | 49 | imim1i 63 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 = 𝐶 → 𝐵 = 𝐷) → (((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) → 𝐵 = 𝐷)) |
| 51 | 50 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝐵 = 𝐷) |
| 52 | | simprlr 780 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝐵) |
| 53 | | simprrr 782 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑣 = 𝐷) |
| 54 | 51, 52, 53 | 3eqtr4d 2787 |
. . . . . . . . . . . . 13
⊢ (((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝑣) |
| 55 | 54 | rexlimivw 3151 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
𝑋 ((𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝑣) |
| 56 | 47, 55 | syl 17 |
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝑣) |
| 57 | 56 | rexlimivw 3151 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝑋 (∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝑣) |
| 58 | 46, 57 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) ∧ ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷))) → 𝑢 = 𝑣) |
| 59 | 58 | ex 412 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → (∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 ((𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) → 𝑢 = 𝑣)) |
| 60 | 45, 59 | biimtrrid 243 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → ((∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝑋 (𝑧 = 𝐶 ∧ 𝑣 = 𝐷)) → 𝑢 = 𝑣)) |
| 61 | 44, 60 | syl9 77 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → ((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 62 | 61 | alrimdv 1929 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → ∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 63 | 62 | alrimdv 1929 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → ∀𝑢∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 64 | 63 | alrimdv 1929 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → ∀𝑧∀𝑢∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 65 | 2, 9, 10 | fliftrel 7328 |
. . . . 5
⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
| 66 | | relxp 5703 |
. . . . 5
⊢ Rel
(𝑅 × 𝑆) |
| 67 | | relss 5791 |
. . . . 5
⊢ (𝐹 ⊆ (𝑅 × 𝑆) → (Rel (𝑅 × 𝑆) → Rel 𝐹)) |
| 68 | 65, 66, 67 | mpisyl 21 |
. . . 4
⊢ (𝜑 → Rel 𝐹) |
| 69 | | dffun2 6571 |
. . . . 5
⊢ (Fun
𝐹 ↔ (Rel 𝐹 ∧ ∀𝑧∀𝑢∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 70 | 69 | baib 535 |
. . . 4
⊢ (Rel
𝐹 → (Fun 𝐹 ↔ ∀𝑧∀𝑢∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 71 | 68, 70 | syl 17 |
. . 3
⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑧∀𝑢∀𝑣((𝑧𝐹𝑢 ∧ 𝑧𝐹𝑣) → 𝑢 = 𝑣))) |
| 72 | 64, 71 | sylibrd 259 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷) → Fun 𝐹)) |
| 73 | 35, 72 | impbid 212 |
1
⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐴 = 𝐶 → 𝐵 = 𝐷))) |