Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2 Structured version   Visualization version   GIF version

Theorem ssralv2 42151
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3987 for two quantifiers. The proof of ssralv2 42151 was automatically generated by minimizing the automatically translated proof of ssralv2VD 42486. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2
StepHypRef Expression
1 nfv 1917 . 2 𝑥(𝐴𝐵𝐶𝐷)
2 nfra1 3144 . 2 𝑥𝑥𝐵𝑦𝐷 𝜑
3 ssralv 3987 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
43adantr 481 . . . . 5 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
5 df-ral 3069 . . . . 5 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
64, 5syl6ib 250 . . . 4 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)))
7 sp 2176 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
86, 7syl6 35 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐷 𝜑)))
9 ssralv 3987 . . . 4 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
109adantl 482 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
118, 10syl6d 75 . 2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐶 𝜑)))
121, 2, 11ralrimd 3143 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  wral 3064  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  ordelordALT  42157  ordelordALTVD  42487
  Copyright terms: Public domain W3C validator