| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssralv2 | Structured version Visualization version GIF version | ||
| Description: Quantification restricted to a subclass for two quantifiers. ssralv 3999 for two quantifiers. The proof of ssralv2 44648 was automatically generated by minimizing the automatically translated proof of ssralv2VD 44982. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ssralv2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) | |
| 2 | nfra1 3257 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 | |
| 3 | ssralv 3999 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
| 5 | df-ral 3049 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
| 6 | 4, 5 | imbitrdi 251 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
| 7 | sp 2188 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
| 8 | 6, 7 | syl6 35 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
| 9 | ssralv 3999 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) | |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
| 11 | 8, 10 | syl6d 75 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑))) |
| 12 | 1, 2, 11 | ralrimd 3238 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-ral 3049 df-ss 3915 |
| This theorem is referenced by: ordelordALT 44654 ordelordALTVD 44983 |
| Copyright terms: Public domain | W3C validator |