Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2 Structured version   Visualization version   GIF version

Theorem ssralv2 43755
Description: Quantification restricted to a subclass for two quantifiers. ssralv 4050 for two quantifiers. The proof of ssralv2 43755 was automatically generated by minimizing the automatically translated proof of ssralv2VD 44090. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2
StepHypRef Expression
1 nfv 1916 . 2 𝑥(𝐴𝐵𝐶𝐷)
2 nfra1 3280 . 2 𝑥𝑥𝐵𝑦𝐷 𝜑
3 ssralv 4050 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
43adantr 480 . . . . 5 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
5 df-ral 3061 . . . . 5 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
64, 5imbitrdi 250 . . . 4 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)))
7 sp 2175 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
86, 7syl6 35 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐷 𝜑)))
9 ssralv 4050 . . . 4 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
109adantl 481 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
118, 10syl6d 75 . 2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐶 𝜑)))
121, 2, 11ralrimd 3260 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2105  wral 3060  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965
This theorem is referenced by:  ordelordALT  43761  ordelordALTVD  44091
  Copyright terms: Public domain W3C validator