![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssralv2 | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass for two quantifiers. ssralv 4064 for two quantifiers. The proof of ssralv2 44529 was automatically generated by minimizing the automatically translated proof of ssralv2VD 44864. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssralv2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1912 | . 2 ⊢ Ⅎ𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) | |
2 | nfra1 3282 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 | |
3 | ssralv 4064 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
5 | df-ral 3060 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
6 | 4, 5 | imbitrdi 251 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
7 | sp 2181 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
8 | 6, 7 | syl6 35 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
9 | ssralv 4064 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) | |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
11 | 8, 10 | syl6d 75 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑))) |
12 | 1, 2, 11 | ralrimd 3262 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-ral 3060 df-ss 3980 |
This theorem is referenced by: ordelordALT 44535 ordelordALTVD 44865 |
Copyright terms: Public domain | W3C validator |