![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssralv2 | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass for two quantifiers. ssralv 4050 for two quantifiers. The proof of ssralv2 43594 was automatically generated by minimizing the automatically translated proof of ssralv2VD 43929. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssralv2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) | |
2 | nfra1 3281 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 | |
3 | ssralv 4050 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
5 | df-ral 3062 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
6 | 4, 5 | imbitrdi 250 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
7 | sp 2176 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
8 | 6, 7 | syl6 35 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
9 | ssralv 4050 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) | |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
11 | 8, 10 | syl6d 75 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑))) |
12 | 1, 2, 11 | ralrimd 3261 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: ordelordALT 43600 ordelordALTVD 43930 |
Copyright terms: Public domain | W3C validator |