Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssralv2 | Structured version Visualization version GIF version |
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3987 for two quantifiers. The proof of ssralv2 42151 was automatically generated by minimizing the automatically translated proof of ssralv2VD 42486. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ssralv2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) | |
2 | nfra1 3144 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 | |
3 | ssralv 3987 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) | |
4 | 3 | adantr 481 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑)) |
5 | df-ral 3069 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
6 | 4, 5 | syl6ib 250 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
7 | sp 2176 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑) → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑)) | |
8 | 6, 7 | syl6 35 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷 𝜑))) |
9 | ssralv 3987 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) | |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐶 𝜑)) |
11 | 8, 10 | syl6d 75 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶 𝜑))) |
12 | 1, 2, 11 | ralrimd 3143 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ordelordALT 42157 ordelordALTVD 42487 |
Copyright terms: Public domain | W3C validator |