Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2 Structured version   Visualization version   GIF version

Theorem ssralv2 44502
Description: Quantification restricted to a subclass for two quantifiers. ssralv 4077 for two quantifiers. The proof of ssralv2 44502 was automatically generated by minimizing the automatically translated proof of ssralv2VD 44837. The automatic translation is by the tools program translate_without_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑦,𝐶   𝑥,𝐷   𝑦,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem ssralv2
StepHypRef Expression
1 nfv 1913 . 2 𝑥(𝐴𝐵𝐶𝐷)
2 nfra1 3290 . 2 𝑥𝑥𝐵𝑦𝐷 𝜑
3 ssralv 4077 . . . . . 6 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
43adantr 480 . . . . 5 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐷 𝜑))
5 df-ral 3068 . . . . 5 (∀𝑥𝐴𝑦𝐷 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑))
64, 5imbitrdi 251 . . . 4 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑)))
7 sp 2184 . . . 4 (∀𝑥(𝑥𝐴 → ∀𝑦𝐷 𝜑) → (𝑥𝐴 → ∀𝑦𝐷 𝜑))
86, 7syl6 35 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐷 𝜑)))
9 ssralv 4077 . . . 4 (𝐶𝐷 → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
109adantl 481 . . 3 ((𝐴𝐵𝐶𝐷) → (∀𝑦𝐷 𝜑 → ∀𝑦𝐶 𝜑))
118, 10syl6d 75 . 2 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → (𝑥𝐴 → ∀𝑦𝐶 𝜑)))
121, 2, 11ralrimd 3270 1 ((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wcel 2108  wral 3067  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-ral 3068  df-ss 3993
This theorem is referenced by:  ordelordALT  44508  ordelordALTVD  44838
  Copyright terms: Public domain W3C validator