![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 407 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3145 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: ralrimdva 3154 ralrimivv 3198 wefrc 5669 oneqmin 7784 nneneq 9205 nneneqOLD 9217 cflm 10241 coflim 10252 isf32lem12 10355 axdc3lem2 10442 zorn2lem7 10493 axpre-sup 11160 zmax 12925 zbtwnre 12926 supxrunb2 13295 fzrevral 13582 lcmfdvdsb 16576 islss4 20565 topbas 22466 elcls3 22578 neips 22608 clslp 22643 subbascn 22749 cnpnei 22759 comppfsc 23027 fgss2 23369 fbflim2 23472 alexsubALTlem3 23544 alexsubALTlem4 23545 alexsubALT 23546 metcnp3 24040 aalioulem3 25838 brbtwn2 28152 hial0 30342 hial02 30343 ococss 30533 lnopmi 31240 adjlnop 31326 pjss2coi 31404 pj3cor1i 31449 strlem3a 31492 hstrlem3a 31500 mdbr3 31537 mdbr4 31538 dmdmd 31540 dmdbr3 31545 dmdbr4 31546 dmdbr5 31548 ssmd2 31552 mdslmd1i 31569 mdsymlem7 31649 cdj1i 31673 cdj3lem2b 31677 sat1el2xp 34358 mpomulcn 35150 fvineqsneu 36280 lub0N 38047 glb0N 38051 hlrelat2 38262 snatpsubN 38609 pmaple 38620 pclclN 38750 pclfinN 38759 pclfinclN 38809 ltrneq2 39007 trlval2 39022 trlord 39428 trintALT 43627 lindslinindsimp2 47097 |
Copyright terms: Public domain | W3C validator |