![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 408 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3146 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 414 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: ralrimdva 3155 ralrimivv 3199 wefrc 5671 oneqmin 7788 nneneq 9209 nneneqOLD 9221 cflm 10245 coflim 10256 isf32lem12 10359 axdc3lem2 10446 zorn2lem7 10497 axpre-sup 11164 zmax 12929 zbtwnre 12930 supxrunb2 13299 fzrevral 13586 lcmfdvdsb 16580 islss4 20573 topbas 22475 elcls3 22587 neips 22617 clslp 22652 subbascn 22758 cnpnei 22768 comppfsc 23036 fgss2 23378 fbflim2 23481 alexsubALTlem3 23553 alexsubALTlem4 23554 alexsubALT 23555 metcnp3 24049 aalioulem3 25847 brbtwn2 28163 hial0 30355 hial02 30356 ococss 30546 lnopmi 31253 adjlnop 31339 pjss2coi 31417 pj3cor1i 31462 strlem3a 31505 hstrlem3a 31513 mdbr3 31550 mdbr4 31551 dmdmd 31553 dmdbr3 31558 dmdbr4 31559 dmdbr5 31561 ssmd2 31565 mdslmd1i 31582 mdsymlem7 31662 cdj1i 31686 cdj3lem2b 31690 sat1el2xp 34370 mpomulcn 35162 fvineqsneu 36292 lub0N 38059 glb0N 38063 hlrelat2 38274 snatpsubN 38621 pmaple 38632 pclclN 38762 pclfinN 38771 pclfinclN 38821 ltrneq2 39019 trlval2 39034 trlord 39440 trintALT 43642 lindslinindsimp2 47144 |
Copyright terms: Public domain | W3C validator |