| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3125 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: ralrimdva 3134 ralrimivv 3179 wefrc 5635 oneqmin 7779 nneneq 9176 cflm 10210 coflim 10221 isf32lem12 10324 axdc3lem2 10411 zorn2lem7 10462 axpre-sup 11129 zmax 12911 zbtwnre 12912 supxrunb2 13287 fzrevral 13580 lcmfdvdsb 16620 islss4 20875 topbas 22866 elcls3 22977 neips 23007 clslp 23042 subbascn 23148 cnpnei 23158 comppfsc 23426 fgss2 23768 fbflim2 23871 alexsubALTlem3 23943 alexsubALTlem4 23944 alexsubALT 23945 metcnp3 24435 mpomulcn 24765 aalioulem3 26249 onsfi 28254 brbtwn2 28839 hial0 31038 hial02 31039 ococss 31229 lnopmi 31936 adjlnop 32022 pjss2coi 32100 pj3cor1i 32145 strlem3a 32188 hstrlem3a 32196 mdbr3 32233 mdbr4 32234 dmdmd 32236 dmdbr3 32241 dmdbr4 32242 dmdbr5 32244 ssmd2 32248 mdslmd1i 32265 mdsymlem7 32345 cdj1i 32369 cdj3lem2b 32373 sat1el2xp 35373 fvineqsneu 37406 lub0N 39189 glb0N 39193 hlrelat2 39404 snatpsubN 39751 pmaple 39762 pclclN 39892 pclfinN 39901 pclfinclN 39951 ltrneq2 40149 trlval2 40164 trlord 40570 trintALT 44877 lindslinindsimp2 48456 |
| Copyright terms: Public domain | W3C validator |