| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimdva 3133 ralrimivv 3176 wefrc 5625 oneqmin 7756 nneneq 9147 cflm 10179 coflim 10190 isf32lem12 10293 axdc3lem2 10380 zorn2lem7 10431 axpre-sup 11098 zmax 12880 zbtwnre 12881 supxrunb2 13256 fzrevral 13549 lcmfdvdsb 16589 islss4 20900 topbas 22892 elcls3 23003 neips 23033 clslp 23068 subbascn 23174 cnpnei 23184 comppfsc 23452 fgss2 23794 fbflim2 23897 alexsubALTlem3 23969 alexsubALTlem4 23970 alexsubALT 23971 metcnp3 24461 mpomulcn 24791 aalioulem3 26275 onsfi 28287 brbtwn2 28885 hial0 31081 hial02 31082 ococss 31272 lnopmi 31979 adjlnop 32065 pjss2coi 32143 pj3cor1i 32188 strlem3a 32231 hstrlem3a 32239 mdbr3 32276 mdbr4 32277 dmdmd 32279 dmdbr3 32284 dmdbr4 32285 dmdbr5 32287 ssmd2 32291 mdslmd1i 32308 mdsymlem7 32388 cdj1i 32412 cdj3lem2b 32416 sat1el2xp 35359 fvineqsneu 37392 lub0N 39175 glb0N 39179 hlrelat2 39390 snatpsubN 39737 pmaple 39748 pclclN 39878 pclfinN 39887 pclfinclN 39937 ltrneq2 40135 trlval2 40150 trlord 40556 trintALT 44863 lindslinindsimp2 48445 |
| Copyright terms: Public domain | W3C validator |