![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3143 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3060 |
This theorem is referenced by: ralrimdva 3152 ralrimivv 3198 wefrc 5683 oneqmin 7820 nneneq 9244 nneneqOLD 9256 cflm 10288 coflim 10299 isf32lem12 10402 axdc3lem2 10489 zorn2lem7 10540 axpre-sup 11207 zmax 12985 zbtwnre 12986 supxrunb2 13359 fzrevral 13649 lcmfdvdsb 16677 islss4 20978 topbas 22995 elcls3 23107 neips 23137 clslp 23172 subbascn 23278 cnpnei 23288 comppfsc 23556 fgss2 23898 fbflim2 24001 alexsubALTlem3 24073 alexsubALTlem4 24074 alexsubALT 24075 metcnp3 24569 mpomulcn 24905 aalioulem3 26391 brbtwn2 28935 hial0 31131 hial02 31132 ococss 31322 lnopmi 32029 adjlnop 32115 pjss2coi 32193 pj3cor1i 32238 strlem3a 32281 hstrlem3a 32289 mdbr3 32326 mdbr4 32327 dmdmd 32329 dmdbr3 32334 dmdbr4 32335 dmdbr5 32337 ssmd2 32341 mdslmd1i 32358 mdsymlem7 32438 cdj1i 32462 cdj3lem2b 32466 sat1el2xp 35364 fvineqsneu 37394 lub0N 39171 glb0N 39175 hlrelat2 39386 snatpsubN 39733 pmaple 39744 pclclN 39874 pclfinN 39883 pclfinclN 39933 ltrneq2 40131 trlval2 40146 trlord 40552 trintALT 44879 lindslinindsimp2 48309 |
Copyright terms: Public domain | W3C validator |