Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3106 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: ralrimdva 3112 ralrimivv 3113 wefrc 5574 oneqmin 7627 nneneq 8896 cflm 9937 coflim 9948 isf32lem12 10051 axdc3lem2 10138 zorn2lem7 10189 axpre-sup 10856 zmax 12614 zbtwnre 12615 supxrunb2 12983 fzrevral 13270 lcmfdvdsb 16276 islss4 20139 topbas 22030 elcls3 22142 neips 22172 clslp 22207 subbascn 22313 cnpnei 22323 comppfsc 22591 fgss2 22933 fbflim2 23036 alexsubALTlem3 23108 alexsubALTlem4 23109 alexsubALT 23110 metcnp3 23602 aalioulem3 25399 brbtwn2 27176 hial0 29365 hial02 29366 ococss 29556 lnopmi 30263 adjlnop 30349 pjss2coi 30427 pj3cor1i 30472 strlem3a 30515 hstrlem3a 30523 mdbr3 30560 mdbr4 30561 dmdmd 30563 dmdbr3 30568 dmdbr4 30569 dmdbr5 30571 ssmd2 30575 mdslmd1i 30592 mdsymlem7 30672 cdj1i 30696 cdj3lem2b 30700 sat1el2xp 33241 fvineqsneu 35509 lub0N 37130 glb0N 37134 hlrelat2 37344 snatpsubN 37691 pmaple 37702 pclclN 37832 pclfinN 37841 pclfinclN 37891 ltrneq2 38089 trlval2 38104 trlord 38510 trintALT 42390 lindslinindsimp2 45692 |
Copyright terms: Public domain | W3C validator |