![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3151 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: ralrimdva 3160 ralrimivv 3206 wefrc 5694 oneqmin 7836 nneneq 9272 nneneqOLD 9284 cflm 10319 coflim 10330 isf32lem12 10433 axdc3lem2 10520 zorn2lem7 10571 axpre-sup 11238 zmax 13010 zbtwnre 13011 supxrunb2 13382 fzrevral 13669 lcmfdvdsb 16690 islss4 20983 topbas 23000 elcls3 23112 neips 23142 clslp 23177 subbascn 23283 cnpnei 23293 comppfsc 23561 fgss2 23903 fbflim2 24006 alexsubALTlem3 24078 alexsubALTlem4 24079 alexsubALT 24080 metcnp3 24574 mpomulcn 24910 aalioulem3 26394 brbtwn2 28938 hial0 31134 hial02 31135 ococss 31325 lnopmi 32032 adjlnop 32118 pjss2coi 32196 pj3cor1i 32241 strlem3a 32284 hstrlem3a 32292 mdbr3 32329 mdbr4 32330 dmdmd 32332 dmdbr3 32337 dmdbr4 32338 dmdbr5 32340 ssmd2 32344 mdslmd1i 32361 mdsymlem7 32441 cdj1i 32465 cdj3lem2b 32469 sat1el2xp 35347 fvineqsneu 37377 lub0N 39145 glb0N 39149 hlrelat2 39360 snatpsubN 39707 pmaple 39718 pclclN 39848 pclfinN 39857 pclfinclN 39907 ltrneq2 40105 trlval2 40120 trlord 40526 trintALT 44852 lindslinindsimp2 48192 |
Copyright terms: Public domain | W3C validator |