| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimdva 3133 ralrimivv 3176 wefrc 5625 oneqmin 7756 nneneq 9147 cflm 10181 coflim 10192 isf32lem12 10295 axdc3lem2 10382 zorn2lem7 10433 axpre-sup 11100 zmax 12882 zbtwnre 12883 supxrunb2 13258 fzrevral 13551 lcmfdvdsb 16590 islss4 20901 topbas 22893 elcls3 23004 neips 23034 clslp 23069 subbascn 23175 cnpnei 23185 comppfsc 23453 fgss2 23795 fbflim2 23898 alexsubALTlem3 23970 alexsubALTlem4 23971 alexsubALT 23972 metcnp3 24462 mpomulcn 24792 aalioulem3 26276 onsfi 28288 brbtwn2 28886 hial0 31082 hial02 31083 ococss 31273 lnopmi 31980 adjlnop 32066 pjss2coi 32144 pj3cor1i 32189 strlem3a 32232 hstrlem3a 32240 mdbr3 32277 mdbr4 32278 dmdmd 32280 dmdbr3 32285 dmdbr4 32286 dmdbr5 32288 ssmd2 32292 mdslmd1i 32309 mdsymlem7 32389 cdj1i 32413 cdj3lem2b 32417 sat1el2xp 35360 fvineqsneu 37393 lub0N 39176 glb0N 39180 hlrelat2 39391 snatpsubN 39738 pmaple 39749 pclclN 39879 pclfinN 39888 pclfinclN 39938 ltrneq2 40136 trlval2 40151 trlord 40557 trintALT 44864 lindslinindsimp2 48446 |
| Copyright terms: Public domain | W3C validator |