| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3120 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimdva 3129 ralrimivv 3170 wefrc 5613 oneqmin 7736 nneneq 9120 cflm 10144 coflim 10155 isf32lem12 10258 axdc3lem2 10345 zorn2lem7 10396 axpre-sup 11063 zmax 12846 zbtwnre 12847 supxrunb2 13222 fzrevral 13515 lcmfdvdsb 16554 islss4 20865 topbas 22857 elcls3 22968 neips 22998 clslp 23033 subbascn 23139 cnpnei 23149 comppfsc 23417 fgss2 23759 fbflim2 23862 alexsubALTlem3 23934 alexsubALTlem4 23935 alexsubALT 23936 metcnp3 24426 mpomulcn 24756 aalioulem3 26240 onsfi 28254 brbtwn2 28854 hial0 31050 hial02 31051 ococss 31241 lnopmi 31948 adjlnop 32034 pjss2coi 32112 pj3cor1i 32157 strlem3a 32200 hstrlem3a 32208 mdbr3 32245 mdbr4 32246 dmdmd 32248 dmdbr3 32253 dmdbr4 32254 dmdbr5 32256 ssmd2 32260 mdslmd1i 32277 mdsymlem7 32357 cdj1i 32381 cdj3lem2b 32385 sat1el2xp 35372 fvineqsneu 37405 lub0N 39188 glb0N 39192 hlrelat2 39402 snatpsubN 39749 pmaple 39760 pclclN 39890 pclfinN 39899 pclfinclN 39949 ltrneq2 40147 trlval2 40162 trlord 40568 trintALT 44874 lindslinindsimp2 48468 |
| Copyright terms: Public domain | W3C validator |