| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3131 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: ralrimdva 3140 ralrimivv 3185 wefrc 5648 oneqmin 7794 nneneq 9220 cflm 10264 coflim 10275 isf32lem12 10378 axdc3lem2 10465 zorn2lem7 10516 axpre-sup 11183 zmax 12961 zbtwnre 12962 supxrunb2 13336 fzrevral 13629 lcmfdvdsb 16662 islss4 20919 topbas 22910 elcls3 23021 neips 23051 clslp 23086 subbascn 23192 cnpnei 23202 comppfsc 23470 fgss2 23812 fbflim2 23915 alexsubALTlem3 23987 alexsubALTlem4 23988 alexsubALT 23989 metcnp3 24479 mpomulcn 24809 aalioulem3 26294 onsfi 28299 brbtwn2 28884 hial0 31083 hial02 31084 ococss 31274 lnopmi 31981 adjlnop 32067 pjss2coi 32145 pj3cor1i 32190 strlem3a 32233 hstrlem3a 32241 mdbr3 32278 mdbr4 32279 dmdmd 32281 dmdbr3 32286 dmdbr4 32287 dmdbr5 32289 ssmd2 32293 mdslmd1i 32310 mdsymlem7 32390 cdj1i 32414 cdj3lem2b 32418 sat1el2xp 35401 fvineqsneu 37429 lub0N 39207 glb0N 39211 hlrelat2 39422 snatpsubN 39769 pmaple 39780 pclclN 39910 pclfinN 39919 pclfinclN 39969 ltrneq2 40167 trlval2 40182 trlord 40588 trintALT 44905 lindslinindsimp2 48439 |
| Copyright terms: Public domain | W3C validator |