![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
Ref | Expression |
---|---|
ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
2 | 1 | imp 405 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
3 | 2 | ralrimiv 3143 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
4 | 3 | ex 411 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2104 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ral 3060 |
This theorem is referenced by: ralrimdva 3152 ralrimivv 3196 wefrc 5669 oneqmin 7790 nneneq 9211 nneneqOLD 9223 cflm 10247 coflim 10258 isf32lem12 10361 axdc3lem2 10448 zorn2lem7 10499 axpre-sup 11166 zmax 12933 zbtwnre 12934 supxrunb2 13303 fzrevral 13590 lcmfdvdsb 16584 islss4 20717 topbas 22695 elcls3 22807 neips 22837 clslp 22872 subbascn 22978 cnpnei 22988 comppfsc 23256 fgss2 23598 fbflim2 23701 alexsubALTlem3 23773 alexsubALTlem4 23774 alexsubALT 23775 metcnp3 24269 mpomulcn 24605 aalioulem3 26083 brbtwn2 28430 hial0 30622 hial02 30623 ococss 30813 lnopmi 31520 adjlnop 31606 pjss2coi 31684 pj3cor1i 31729 strlem3a 31772 hstrlem3a 31780 mdbr3 31817 mdbr4 31818 dmdmd 31820 dmdbr3 31825 dmdbr4 31826 dmdbr5 31828 ssmd2 31832 mdslmd1i 31849 mdsymlem7 31929 cdj1i 31953 cdj3lem2b 31957 sat1el2xp 34668 fvineqsneu 36595 lub0N 38362 glb0N 38366 hlrelat2 38577 snatpsubN 38924 pmaple 38935 pclclN 39065 pclfinN 39074 pclfinclN 39124 ltrneq2 39322 trlval2 39337 trlord 39743 trintALT 43944 lindslinindsimp2 47231 |
Copyright terms: Public domain | W3C validator |