| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimdv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Dec-2019.) |
| Ref | Expression |
|---|---|
| ralrimdv.1 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimdv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 2 | 1 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 → 𝜒)) |
| 3 | 2 | ralrimiv 3123 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜒) |
| 4 | 3 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: ralrimdva 3132 ralrimivv 3173 wefrc 5608 oneqmin 7733 nneneq 9115 cflm 10141 coflim 10152 isf32lem12 10255 axdc3lem2 10342 zorn2lem7 10393 axpre-sup 11060 zmax 12843 zbtwnre 12844 supxrunb2 13219 fzrevral 13512 lcmfdvdsb 16554 islss4 20895 topbas 22887 elcls3 22998 neips 23028 clslp 23063 subbascn 23169 cnpnei 23179 comppfsc 23447 fgss2 23789 fbflim2 23892 alexsubALTlem3 23964 alexsubALTlem4 23965 alexsubALT 23966 metcnp3 24455 mpomulcn 24785 aalioulem3 26269 onsfi 28283 brbtwn2 28883 hial0 31082 hial02 31083 ococss 31273 lnopmi 31980 adjlnop 32066 pjss2coi 32144 pj3cor1i 32189 strlem3a 32232 hstrlem3a 32240 mdbr3 32277 mdbr4 32278 dmdmd 32280 dmdbr3 32285 dmdbr4 32286 dmdbr5 32288 ssmd2 32292 mdslmd1i 32309 mdsymlem7 32389 cdj1i 32413 cdj3lem2b 32417 rankfilimb 35113 sat1el2xp 35423 fvineqsneu 37455 lub0N 39287 glb0N 39291 hlrelat2 39501 snatpsubN 39848 pmaple 39859 pclclN 39989 pclfinN 39998 pclfinclN 40048 ltrneq2 40246 trlval2 40261 trlord 40667 trintALT 44972 lindslinindsimp2 48563 |
| Copyright terms: Public domain | W3C validator |