![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rbropap | Structured version Visualization version GIF version |
Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the condition 𝜓. (Contributed by AV, 31-Jan-2021.) |
Ref | Expression |
---|---|
rbropapd.1 | ⊢ (𝜑 → 𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
rbropapd.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rbropap | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rbropapd.1 | . . 3 ⊢ (𝜑 → 𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
2 | rbropapd.2 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rbropapd 5568 | . 2 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
4 | 3 | 3impib 1113 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5150 {copab 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 |
This theorem is referenced by: 2rbropap 5570 brfvopabrbr 7005 |
Copyright terms: Public domain | W3C validator |