MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rbropapd Structured version   Visualization version   GIF version

Theorem rbropapd 5468
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
rbropapd.1 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
rbropapd.2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
Assertion
Ref Expression
rbropapd (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
Distinct variable groups:   𝑓,𝐹,𝑝   𝑃,𝑓,𝑝   𝑓,𝑊,𝑝   𝜒,𝑓,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝜓(𝑓,𝑝)   𝑀(𝑓,𝑝)   𝑋(𝑓,𝑝)   𝑌(𝑓,𝑝)

Proof of Theorem rbropapd
StepHypRef Expression
1 df-br 5071 . . . 4 (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ 𝑀)
2 rbropapd.1 . . . . 5 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
32eleq2d 2824 . . . 4 (𝜑 → (⟨𝐹, 𝑃⟩ ∈ 𝑀 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)}))
41, 3syl5bb 282 . . 3 (𝜑 → (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)}))
5 breq12 5075 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓𝑊𝑝𝐹𝑊𝑃))
6 rbropapd.2 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
75, 6anbi12d 630 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓𝑊𝑝𝜓) ↔ (𝐹𝑊𝑃𝜒)))
87opelopabga 5439 . . 3 ((𝐹𝑋𝑃𝑌) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)} ↔ (𝐹𝑊𝑃𝜒)))
94, 8sylan9bb 509 . 2 ((𝜑 ∧ (𝐹𝑋𝑃𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))
109ex 412 1 (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   class class class wbr 5070  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133
This theorem is referenced by:  rbropap  5469
  Copyright terms: Public domain W3C validator