![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rbropapd | Structured version Visualization version GIF version |
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
Ref | Expression |
---|---|
rbropapd.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
rbropapd.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rbropapd | ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . . 4 ⊢ (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ 𝑀) | |
2 | rbropapd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
3 | 2 | eleq2d 2811 | . . . 4 ⊢ (𝜑 → (〈𝐹, 𝑃〉 ∈ 𝑀 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
4 | 1, 3 | bitrid 282 | . . 3 ⊢ (𝜑 → (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
5 | breq12 5154 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓𝑊𝑝 ↔ 𝐹𝑊𝑃)) | |
6 | rbropapd.2 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | anbi12d 630 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓𝑊𝑝 ∧ 𝜓) ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
8 | 7 | opelopabga 5535 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
9 | 4, 8 | sylan9bb 508 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
10 | 9 | ex 411 | 1 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 〈cop 4636 class class class wbr 5149 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 |
This theorem is referenced by: rbropap 5567 |
Copyright terms: Public domain | W3C validator |