|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rbropapd | Structured version Visualization version GIF version | ||
| Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| rbropapd.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | 
| rbropapd.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| rbropapd | ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-br 5143 | . . . 4 ⊢ (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ 𝑀) | |
| 2 | rbropapd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
| 3 | 2 | eleq2d 2826 | . . . 4 ⊢ (𝜑 → (〈𝐹, 𝑃〉 ∈ 𝑀 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) | 
| 4 | 1, 3 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) | 
| 5 | breq12 5147 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓𝑊𝑝 ↔ 𝐹𝑊𝑃)) | |
| 6 | rbropapd.2 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
| 7 | 5, 6 | anbi12d 632 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓𝑊𝑝 ∧ 𝜓) ↔ (𝐹𝑊𝑃 ∧ 𝜒))) | 
| 8 | 7 | opelopabga 5537 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) | 
| 9 | 4, 8 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) | 
| 10 | 9 | ex 412 | 1 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4631 class class class wbr 5142 {copab 5204 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 | 
| This theorem is referenced by: rbropap 5569 | 
| Copyright terms: Public domain | W3C validator |