![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rbropap | Structured version Visualization version GIF version |
Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the conditions 𝜓 and 𝜏. (Contributed by AV, 31-Jan-2021.) |
Ref | Expression |
---|---|
2rbropap.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) |
2rbropap.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
2rbropap.3 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) |
Ref | Expression |
---|---|
2rbropap | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rbropap.1 | . . . 4 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) | |
2 | 3anass 1095 | . . . . 5 ⊢ ((𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏) ↔ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))) | |
3 | 2 | opabbii 5233 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)} = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))} |
4 | 1, 3 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))}) |
5 | 2rbropap.2 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
6 | 2rbropap.3 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) | |
7 | 5, 6 | anbi12d 631 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃))) |
8 | 4, 7 | rbropap 5584 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃)))) |
9 | 3anass 1095 | . 2 ⊢ ((𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃) ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃))) | |
10 | 8, 9 | bitr4di 289 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 |
This theorem is referenced by: iswlkon 29693 |
Copyright terms: Public domain | W3C validator |