Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rbropap | Structured version Visualization version GIF version |
Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the conditions 𝜓 and 𝜏. (Contributed by AV, 31-Jan-2021.) |
Ref | Expression |
---|---|
2rbropap.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) |
2rbropap.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
2rbropap.3 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) |
Ref | Expression |
---|---|
2rbropap | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rbropap.1 | . . . 4 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) | |
2 | 3anass 1094 | . . . . 5 ⊢ ((𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏) ↔ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))) | |
3 | 2 | opabbii 5141 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)} = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))} |
4 | 1, 3 | eqtrdi 2794 | . . 3 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))}) |
5 | 2rbropap.2 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
6 | 2rbropap.3 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) | |
7 | 5, 6 | anbi12d 631 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃))) |
8 | 4, 7 | rbropap 5478 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃)))) |
9 | 3anass 1094 | . 2 ⊢ ((𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃) ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃))) | |
10 | 8, 9 | bitr4di 289 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 |
This theorem is referenced by: iswlkon 28025 |
Copyright terms: Public domain | W3C validator |