MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rbropap Structured version   Visualization version   GIF version

Theorem 2rbropap 5576
Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the conditions 𝜓 and 𝜏. (Contributed by AV, 31-Jan-2021.)
Hypotheses
Ref Expression
2rbropap.1 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓𝜏)})
2rbropap.2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
2rbropap.3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜏𝜃))
Assertion
Ref Expression
2rbropap ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒𝜃)))
Distinct variable groups:   𝑓,𝐹,𝑝   𝑃,𝑓,𝑝   𝑓,𝑊,𝑝   𝜒,𝑓,𝑝   𝜃,𝑓,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝜓(𝑓,𝑝)   𝜏(𝑓,𝑝)   𝑀(𝑓,𝑝)   𝑋(𝑓,𝑝)   𝑌(𝑓,𝑝)

Proof of Theorem 2rbropap
StepHypRef Expression
1 2rbropap.1 . . . 4 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓𝜏)})
2 3anass 1094 . . . . 5 ((𝑓𝑊𝑝𝜓𝜏) ↔ (𝑓𝑊𝑝 ∧ (𝜓𝜏)))
32opabbii 5215 . . . 4 {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓𝜏)} = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝 ∧ (𝜓𝜏))}
41, 3eqtrdi 2791 . . 3 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝 ∧ (𝜓𝜏))})
5 2rbropap.2 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
6 2rbropap.3 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜏𝜃))
75, 6anbi12d 632 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝜓𝜏) ↔ (𝜒𝜃)))
84, 7rbropap 5575 . 2 ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ (𝜒𝜃))))
9 3anass 1094 . 2 ((𝐹𝑊𝑃𝜒𝜃) ↔ (𝐹𝑊𝑃 ∧ (𝜒𝜃)))
108, 9bitr4di 289 1 ((𝜑𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211
This theorem is referenced by:  iswlkon  29690
  Copyright terms: Public domain W3C validator