| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rbropap | Structured version Visualization version GIF version | ||
| Description: Properties of a pair in a restricted binary relation 𝑀 expressed as an ordered-pair class abstraction: 𝑀 is the binary relation 𝑊 restricted by the conditions 𝜓 and 𝜏. (Contributed by AV, 31-Jan-2021.) |
| Ref | Expression |
|---|---|
| 2rbropap.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) |
| 2rbropap.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
| 2rbropap.3 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| 2rbropap | ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rbropap.1 | . . . 4 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)}) | |
| 2 | 3anass 1094 | . . . . 5 ⊢ ((𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏) ↔ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))) | |
| 3 | 2 | opabbii 5192 | . . . 4 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓 ∧ 𝜏)} = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))} |
| 4 | 1, 3 | eqtrdi 2785 | . . 3 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ (𝜓 ∧ 𝜏))}) |
| 5 | 2rbropap.2 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
| 6 | 2rbropap.3 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜏 ↔ 𝜃)) | |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝜓 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃))) |
| 8 | 4, 7 | rbropap 5552 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃)))) |
| 9 | 3anass 1094 | . 2 ⊢ ((𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃) ↔ (𝐹𝑊𝑃 ∧ (𝜒 ∧ 𝜃))) | |
| 10 | 8, 9 | bitr4di 289 | 1 ⊢ ((𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 {copab 5187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 |
| This theorem is referenced by: iswlkon 29622 |
| Copyright terms: Public domain | W3C validator |